

Technical Report on the Chisna Copper Gold Project

Chistochina Mining District, South-Central Alaska

Prepared for International Tower Hill Mines Ltd. Suite 1920 - 1188 West Georgia St. Vancouver, British Columbia V6E 4A2

> Prepared by Chris Taylor Geological Ltd. 5498 Edgewater Dr Manotick, Ontario K4M1B4

Christopher N.A. Taylor, P.Geo.

June 22, 2010

Table of Contents

1.0 Summary	3
2.0 Introduction and Terms of Reference	3
2.1 Units and Abbreviations	4
3.0 Reliance on Other Experts	4
4.0 Property Description and Location	4
4.1 Exploration Agreement with Ahtna Incorporated	9
5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography	10
6.0 Exploration, History and Development	10
6.1 Placer Gold, Silver and PGE	13
6.2 Bedrock Porphyry Related Base and Base Plus Precious Metal Quartz Vein	13
6.3 Bedrock porphyry Related Bulk Mineralization, Including Skarns	14
6.4 Recent Exploration	14
7.0 Geological Setting	16
7.1 Property Geology	16
8.0 Deposit Type	18
9.0 Mineralization	24
10.0 Exploration	39
11.0 Drilling	40
12.0 Sample Method and Approach	41
13.0 Sample Preparation, Analysis and Security	41
14.0 Data Verification	42
15.0 Adjacent Properties	43
16.0 Mineral Processing and Metallurgical Testing	43
17.0 Mineral Resource and Mineral Reserve Estimates	43

18.0 Interpretation and Conclusions	43
19.0 Recommendations	44
19.1 Proposed Budget	46
20.0 References	47
21.0 Date and Signature Page	49
22.0 Certificate of Author	50

93

26

27

30

31

32

33

34

35

37

38

- 51 Appendix 1
- Appendix 2 Table 1 11
- Figure 1 5
- Figure 2 6
- Figure 3 18
- Figure 4 20
- Figure 5A 21 Figure 5B 22
- Figure 6 24
- Figure 7
- Figure 8
- Figure 9A 28 Figure 9B 29
- Figure 10
- Figure 11 Figure 12 Figure 13 Figure 14
- Figure 15 Figure 16
- Figure 17 Figure 18

1.0 Summary

At the request of International Tower Hill Mines Ltd. ("ITH"), Chris Taylor Geological Ltd. has conducted a technical review of the Chisna copper-gold property in South-Central Alaska, located approximately 230 kilometers southeast of Fairbanks, Alaska. ITH has recently entered into a joint venture agreement with Ocean Park Ventures ("OCP") whereby OCP can earn a 51% interest in the Chisna copper gold claims.

The property is situated in mountainous and remote terrain. Following extensive geological mapping and geochemical surveying by ITH during the 2006 to 2008 field seasons, numerous bedrock, soil and silt geochemical anomalies have been identified. Several porphyry targets have been mapped, one of which, in the Southeast Chisna claim group, has concentric zoned alteration and surface assays returning values as high as 7.11% copper and 11.45 g/t gold. The POW target, in the Northwest Chisna claim block, is a structurally-associated quartz-vein gold target with surface assays returning values as high as 13.0 g/t gold.

Rocks underlying the Chisna property are part of the Chulitna Terrane. The tectono-stratigraphic succession is consistent with Triassic deposition of sediments into a rifted Paleozoic volcanic arc. This package was then intruded by an extensive suite of Mesozoic porphyry magmas, developing several porphyry centres.

In March 2010, an exploration agreement was signed with the Ahtna Native Corporation, allowing the US subsidiary of ITH to conduct exploration activities over an additional 30,561 ha area, with reciprocal benefits including employment, annual option royalties, and scalable net smelter royalties in the event of project advancement to mining received by Ahtna. This agreement significantly augments the controlled land position in the Southeast porphyry target area.

Further field mapping and geochemical sampling is suggested across all of the Chisna claims, in order to build a better and more accurate picture of the complex intrusive and mineralization processes which have affected the area. A magnetotelluric survey is suggested for the Northwest Chisna POW target, in order to better understand its extent below sediment cover and its subsurface orientation. Similarly, an IP chargeability/resistivity survey with 3D inversion modeling is suggested for the Southeast Chisna Claim block, in order to delineate zones of diffuse porphyry sulfide mineralization at this target.

Diamond drilling is recommended for both the POW and Southeast Chisna targets. This will require advanced winter mobilization and helicopter-camp support for drill and field crews. Construction of long-term camps for exploration staff will be necessary at both targets to support this advanced exploration activity.

2.0 Introduction and Terms of Reference

Chris Taylor Geological Ltd. was retained by International Tower Hill Mines ("ITH") to prepare an NI 43-101 compliant technical report on the Chisna Copper Gold property. ITH conducted an extensive geological mapping and geochemical sampling program on the property between 2006 and 2008. This work was supplemented by airborne geophysical surveying. Additional work has been undertaken outside of the last three years by a large number of individual and corporate explorationists. The author visited the Northwest Chisna Claim block on November 9th, 2009 by helicopter, where he inspected access to the claims, made observations of local conditions, and took a small number of rock samples. Inclement weather in the morning prevented the author visiting the Southeast Chisna claim block, and time was limited due to weather and the short length of day at that time of the year. The inspection tour lasted for one day, including flight time from Fairbanks to the property and back. Snow cover was a few feet on the property (figure 1), and precluded both landing in most areas and making a more detailed geological investigation.

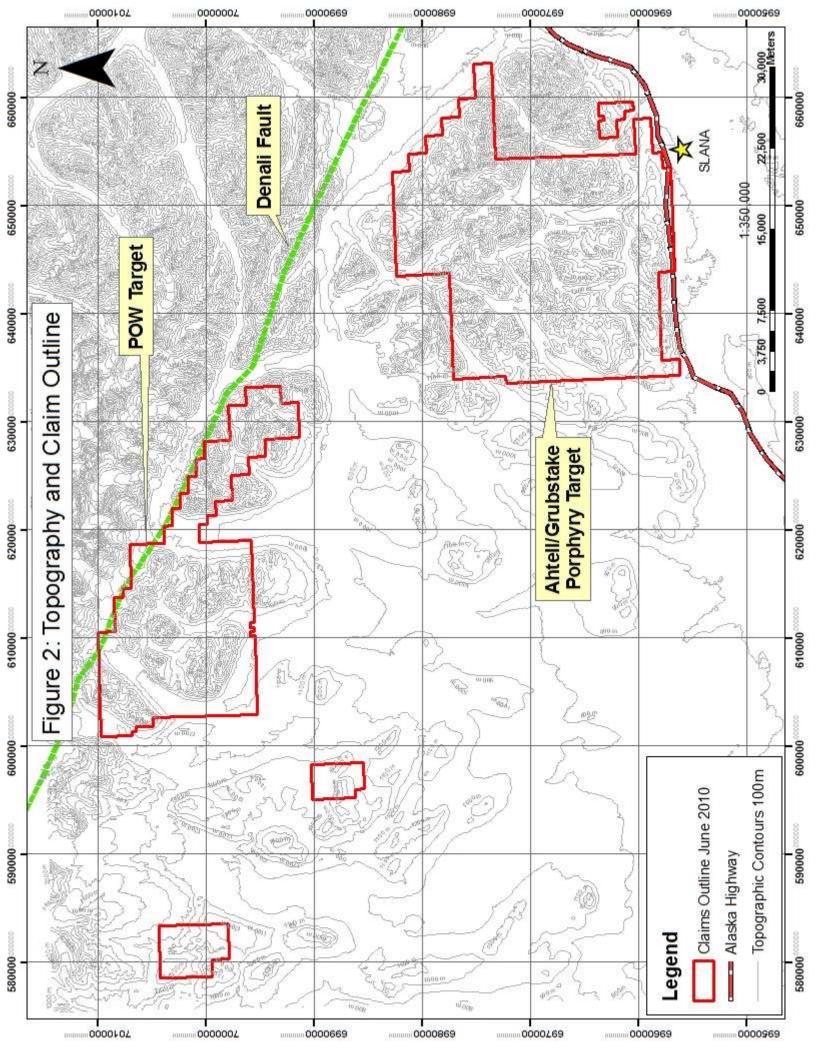
The author has been involved in mineral exploration since 2004, and has worked extensively with porphyry copper deposits in British Columbia. The author also has exploration experience with sediment-hosted epithermal gold deposits in Nevada, USA, and has a research background in structural geology.

2.1 Units and Abbreviations

Standard abbreviations for elements (e.g. Au for gold) are used sparingly in this report. All units reported are in metric. All maps are in UTM projection, North American Datum 1927 Zone 6N unless otherwise specified. For the case or reported assays, 1 g/t (gram per tonne) = 1 ppm (part per million). Other abbreviated terms, such as corporate names, are provided with explanations when introduced in the text.

3.0 Reliance on Other Experts

The author has relied on information provided by ITH at the author's request. This information was supplemented by United States and Alaska government publications, and information concerning adjacent properties filed on SEDAR. Data to generate the maps and figures was included in the ITH data package, but all maps and figures were produced by the author unless otherwise stated.


4.0 Property Description and Location

The Chisna copper gold claims are located in south central Alaska, in the southern Alaska Range south of the Denali Fault, a major strike slip feature responsible for many earthquakes in this region. The claims are divided into two main blocks (see figure 2). The northwest block is located approximately 230 kilometers southeast of Fairbanks, Alaska, while the southeast claim block is located approximately 280 kilometers southeast of Fairbanks, and less than 10 kilometers northwest of the town of Slana, Alaska. The Northwest claim block is also referred to as the "POW" block based on the main geological exploration target in the area. The southeast claim block is also referred to as the "Ahtelll" or "Grubstake claim block, similarly based on geological targets. Two smaller claim groups are located approximately 14 km southwest and 37 km west of the main northwest Chisna claim block, and a non-contiguous small claim group is located less than 2 km southeast of the southeast Chisna claim block. The satellitic claims to Northwest Claim block have seen a small amount of geochemical sampling and

Figure 1: View of landing site near POW Occurrence, Northwest Chisna claim block. "Sample B" was collected from a large boulder at the bottom of this valley. This period of clear weather lasted for most of the afternoon on November 9th, 2009.

The mountain which holds the POW occurrence is behind the helicopter.

very limited outcrop mapping by ITH in 2008, and the satellitic claims to the southeast Chisna claim group have received no work at all. These claim groups will not be discussed directly in the report except inasmuch as they are part of the local geology, as little information exists to place these limited results in context. However, where geochemical samples were taken, these results will be displayed.

Because exploration is at a very early stage, no previous map of bedrock mineralized zones exists with any degree of accuracy. What information is available from ITH's 2006-2008 field programs is presented in the sections on local geology (section 7.1) and mineralization (section 9.0) contained in this report.

The property consists of 982 State of Alaska unpatented lode claims, totaling 57,125.42 ha which are located on government land. This is supplemented by a 26,674.32 ha area acquired through an agreement with the Ahtna native corporation in May, 2010, which is located on land administered by the Ahtna Incorporated ("Ahtna"). Total claimed and exploration agreement-controlled area is 83,799.75 ha. The claims are centred on latitude 144° 21' and longitude 63° 0' (WGS 84 projection), and fall on the Mt. Hayes and Nabesna AMS 1:250,000 scale USGS map sheets, and the Mount Hayes A-1, A-2, and A-3, Gulkana D-1 and D-3 and Nabesna D-6 1: 63,360 scale quadrangles. The Chisna claims were located through a combined helicopter-based and digital recording process, whereby steel rebar claim posts with a mounted wooden block containing an embedded paper describing the claim corner are located by GPS and are dropped from a helicopter at the location described in the embedded paper. Once claim corners are located in this manner, the claims are filed with the State authority based on a Meridian, Township, Range, Section (MRTS) system, where the claim locations are defined by their theoretical location and subdivision of their appropriate section. This system accurately locates each claim directly in the State digital archive, but still requires the physical deployment of appropriately marked claim posts, as a procedural necessity. All the Chisna claims were located and recorded in this manner.

On November 2nd, 2009, Ocean Park Ventures Corporation entered into a joint venture agreement with Raven Gold Alaska Inc. ("Raven"), a wholly owned Alaskan subsidiary of International Tower Hill Mines Ltd. Under the terms of this agreement, Ocean Park's Alaskan subsidiary Ocean Park Alaska Corp. ("OCP Alaska") will have an initial 51% interest, and Raven will have a 49% interest, in the Chisna claims. The terms of this agreement include (all amounts in US dollars):

OCP Alaska, as its initial contribution, fund an aggregate of \$20,000,000 in Exploration Expenditures as follows:

- i. \$5,000,000 in the first year after the closing date of the agreement,
- ii. an additional \$3,000,000 in the second year of the agreement,
- iii. an additional \$3,000,000 in the third year of the agreement,
- iv. an additional \$4,000,000 in the fourth year of the agreement,
- v. and an additional \$5,000,000 in the fifth year of the agreement.

The initial contribution of \$5,000,000 in the first year is mandatory, whereas the additional yearly contributions may be applied across or within different time periods by written assent of the parties, provided totals amount to at least \$20,000,000.

During the first two years of exploration under this agreement Raven will be the operator. Within 60 days of the end of the first two years of operation, the OCP Alaska may assume operatorship with written notice. If such notice is not given, Raven will continue to operate. Oversight of operations will be provided by a Management Committee composed of members of each joint venture group.

This agreement was contingent upon AngloGold Ashanti (U.S.A.) Exploration Inc. ("Anglogold") waiving its right of first refusal with respect to the transactions undertaken in this agreement, which waiver was confirmed by receipt of a letter from Anglogold dated November 17th, 2009.

The US subsidiary of Ocean Park will allot and issue to ITH an aggregate of 1,000,000 fully paid and nonassessable common shares in its capital stock on the following schedule:

- i. 200,000 Shares on the closing date of the joint venture agreement,
- ii. 200,000 Shares annually on the anniversary of the closing date, for four years after the closing date of the joint venture agreement

Upon OCP Alaska having completed its initial five-year or \$20,000,000 and 1,000,000 share contribution it can, within the first 60 days, choose to proceed to acquire an additional nineteen (19%) percent Joint Venture Interest. If OCP Alaska chooses to acquire an additional 19% interest, it must deliver to the Management Committee, within five years of this decision, a positive feasibility study which supports a 300,000 ounce per year of gold equivalent mining operation, and fund all Exploration Expenditures until the delivery of the Feasibility Study or earlier termination of the Option.

The meeting of these requirements would provide OCP Alaska with a 70% interest in the Chisna claims.

A list of the Chisna claims is provided in Appendix 1 of this report. A state rental payment of \$130 per year for claims up to 40 acres (16.19 Ha) and \$100 per year for 160 acre (64.75 Ha) claims applies to these claims. Exploration must be permitted by the Alaska State Department of Natural Resources, and planned physical land disturbance requires bonding payment. Annual rental fees on claims are due by November 30th of each year. Annual rental payments for the 2009-2010 payment year were made by ITH to the State of Alaska Department of Natural Resources on November 23rd, 2009, and the rental fees are paid until November 30th, 2010.

There is no significant bedrock mining on the Chisna claims, and no accompanying land modifications which would be associated with such work, beyond small historic prospect pits of uncertain location. Historic placer gold mining operations are significant, and the approximate locations of such operations are provided in Table 1.

There are no special environmental considerations on the land covered by the Chisna claims. However any land disturbance which will accompany the proposed exploration programs, for instance the

construction of drill pads and drill roads, camp construction and transport of supplies and materials onto the exploration sites by caterpillar train, will require Alaska state Bond Pool Application procedures based on the expected extent and nature of the land disturbance. An Annual Placer Mining Application for Hardrock Mining Activity, which covers hardrock exploration programs, will need to be filed with the Alaska Department of Natural Resources (DNR), Division of Mining, Land and Water. Upon review by the DNR, additional permits involving the Army Corps of Engineers may be required if there are expected water use or wetland modification requirements, and the State Historic Preservation Office may be involved in a separate permitting process if the DNR suggests and archaeological survey be performed. Such permits have not yet been obtained at the time of writing, but typically only require between 15 and 20 days to obtain in the case of normal exploration activities, and will be submitted in due course as exploration activities draw near.

4.1 Exploration Agreement with Ahtna Incorporated

Effective March 30, 2010, a Mineral Exploration Agreement with Option to Lease is in effect between Raven and Ahtna Incorporated, an Alaskan native corporation. Ahtna Incorporated acts to administer and develop the territory traditionally controlled by the Ahtna native people, which includes land of exploration and development interest to ITH for the Chisna project. This agreement adds 26,674.32 ha to the Chisna project, and contains reciprocal benefits including employment, annual option royalties, and scalable net smelter royalties in the event of project advancement to mining which will be received by Ahtna. The details of this agreement are as follows, where Raven has:

- Exclusive right to explore, and the option to enter into a mining lease to develop and mine, the subject lands for a six-year period
- Obligation to make annual option payments of US\$1.00 US\$1.25 per acre
- Obligation to undertake minimum exploration expenditures of US\$4 US\$8 per acre, provided that if the agreement is not terminated at the end of any option year, the exploration expenditures for the next year become a firm commitment
- Release at least 50% of the original lands subject to the agreement at the end of the third year
- preferential contracting, hiring and training practices for Ahtna shareholders or designees
- Obligation to make scholarship contributions to the Ahtna Heritage Foundation, with a value of US\$10,000/year, subject to increase for inflation

All surface work is subject to Ahtna archaeological and cultural clearance. Upon Raven having expended an aggregate of US\$1,000,000, which includes an obligation to complete 2,500 feet of core drilling, and having completed a feasibility study over some or all of the land subject to the exploration agreement within the six year term of the exploration agreement, Raven has the option to enter into a mining lease. The key terms of the mining lease include:

- Exclusive mining rights for an initial term of ten years and so long thereafter as commercial production continues
- Minimum exploration expenditures of US\$4.00 -- US\$9.00 per acre subject to the lease until commercial production is achieved, escalating over time
- Advance minimum royalty payments of US\$6 US\$12 per acre escalating over time (50% deductible from production royalties)

Technical Report on the Chisna Copper Gold Property International Tower Hill Mines Ltd., June 2010

- Net smelter return production royalties for gold and silver scaled from 2.5% (gold price US\$550 per ounce or less) to 14% (gold price per ounce US\$1,900 or higher per ounce), 2.5% on base metals and 3% on all minerals other than gold, silver or base metals
- In the event Raven acquires rights to minerals within the area subject to the lease, the acquired minerals lands are subject to a production royalty in favour of Ahtna of 2% of the gross value of any gold and silver and a NSR of 1% on base metals
- In any year that 20% of the net profits realized by Raven from mining on Ahtna lands exceeds the aggregate royalties paid by Raven, Ahtna is entitled to receive total payments equivalent to 20% of the profits. On non-Ahtna lands they may receive 10% of the net profit.
- Ahtna has the right to acquire a working interest in the lands subject to the lease, which is to be greater than or equal to 10% but not more than 15%, upon Raven having made a production decision, and in consideration, Ahtna will be required to fund ongoing operations after such exercise in an amount equal to 200% of Ahtna's percentage share of the pre-production expenditures incurred by Raven (not including advance minimum royalty payments to Ahtna). Should Ahtna exercise such option, it would become a participant in the Ocean Park/Raven Joint Venture

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography

Topography is generally steep and mountainous, with elevations varying between 1000 and 2000 metres above sea level (a.s.l.). Willow, alder and low brush are common in stream valleys and slopes below approximately 1350 metres a.s.l. Rock exposure is approximately 25% and increases with elevation. Sulfide rich zones commonly form rusty, gossanous areas which are readily visible on exposed ridges and slopes above tree line.

Summers are usually mild with alternating periods of sun and cool. Freezing temperatures can occur in any season at higher elevations (above 1800 metres a.s.l.). Lower elevations may be free of frost for two to three months of the year. Field seasons vary by elevation by are generally 75-100 days. Permafrost is generally present above 1500 metres a.s.l. The onset of winter, as defined by permanent snow cover, is elevation dependant, but lasts at lower elevations from approximately November to April, and at higher elevations from September or October to June. Winter temperatures can reach below -50°C.

The nearest sizeable community to the property is Delta Junction (population 840), which provides basic amenities including helicopter operations. Delta Junction is located approximately 150 kilometers southeast by the AK-2 highway from Fairbanks, Alaska. Another nearby community is Slana (population 124), located less than 8 kilometers southeast of the southernmost Chisna claim groups, which provides limited amenities. Slana is also located along the AK-2, approximately 470 kilometers from Fairbanks. The highway is paved and maintained year round. Otherwise, access to the property is by helicopter and winter road. Several unmaintained trails are marked on the USGS maps as accessing the property, but these are not maintained and their condition is unknown.

6.0 Exploration, History and Development

The area covered by the Chisna claims has been subject to extensive historical placer gold mining operations, and modest historical bedrock exploration efforts. There are no significant bedrock mines on the property. A search for mineral occurrences and historical mining operations within an

approximately 15 kilometer radius of the Chisna Northwest and Chisna Southeast claim blocks yielded over 100 results, as outlined in **Table 1**.

Deposit Name	Lat	Long	Commodity	Туре	Main Element
Chisna Prospect ¹	63°8'59"N	144°47'56"W	Au, Cu, Ni, PGE	Bedrock	Au
Miller Gulch Mine	63°10'29"N	144°49'37"W	Au, Ag, Cu, Hg, PGE	Placer	Au
Ruby Gulch	63°9'32"N	144°46'4"W	Au	Placer	Au
Unnamed	63°10'32"N	144°45'54"W	Ag, Au	Bedrock	Ag
Treasure Gulch Mine	63°10'16"N	144°50'34"W	Au, PGE	Placer	Au
Unnamed	63°8'43"N	144°48'7"W	Cu, Ag, Au, Pb, Sn, Zn	Bedrock	Cu
Unnamed	63°9'52"N	144°50'45"W	Au	Bedrock	Au
Unnamed	63°10'49"N	144°49'55"W	Cu	Bedrock	Cu
Big Four Creek Mine	63°11'7"N	144°49'15"W	Au, Ag, Cu, Cr, Hg, PGE	Placer	Au
Unnamed	63°9'17"N	144°51'0"W	Fe	Bedrock	Fe
Lower Slate Creek Mines	63°10'15"N	144°51'18"W	Au, Ag, Hg, PGE	Placer	Au
Quartz Creek Mine	63°9'5"N	144°45'7"W	Au, Ag	Placer	Au
Unnamed	63°9'17"N	144°51'25"W	Cu, Ag, Au	Bedrock	Cu
Unnamed	63°10'13"N	144°51'46"W	Cu, Ag, Au	Bedrock	Cu
Northland Mines Prospect	63°8'13"N	144°48'43"W	Cu, Ag, Fe, W	Bedrock	Cu
Chistochina Glacier Mine	63°10'40"N	144°51'50"W	Au, PGE, W	Placer	Au
Unnamed	63°9'32"N	144°52'37"W	Fe	Bedrock	Fe
Unnamed	63°11'36"N	144°52'44"W	Cu, Ag, Au, Ni	Bedrock	Cu
Upper Chisna River Prospects	63°7'9"N	144°48'7"W	Au, Ag, PGE	Placer	Au
Unnamed	63°9'29"N	144°41'49"W	Au, Ag	Placer	Au
Unnamed	63°11'59"N	144°52'33"W	Chrysotile, Fe	Bedrock	Chrysotile
Unnamed	63°12'13"N	144°52'15"W	Cu, Ag, Au, Ni, PGE	Bedrock	Cu
Unnamed	63°12'23"N	144°52'19"W	Au, Ag, Zn	Bedrock	Au
Unnamed	63°11'55"N	144°42'3"W	Ag, Cu, Ni, Au, PGE	Placer	Ag
Unnamed	63°11'42"N	144°54'50"W	Cu	Bedrock	Cu
Unnamed	63°12'9"N	144°41'45"W	Ag, Au	Bedrock	Ag
Unnamed	63°12'56"N	144°52'51"W	Ag, Au, Cu, Mo, Ni	Bedrock	Ag
Unnamed	63°7'26"N	144°54'18"W	Ag, Cu	Bedrock	Ag
Unnamed	63°12'56"N	144°53'31"W	Au, Ag, Cu	Bedrock	Au
Unnamed	63°6'20"N	144°44'9"W	Cu, Ag, Au	Bedrock	Cu
Unnamed	63°12'30"N	144°55'4"W	Au, Cu, W	Bedrock	Au
Unnamed	63°10'49"N	144°56'56"W	Cu, Ag	Bedrock	Cu
Unnamed	63°10'23"N	144°57'10"W	Fe	Bedrock	Fe
Unnamed	63°10'4"N	144°57'28"W	Fe	Bedrock	Fe
Ptarmigan Creek Prospect	63°6'56"N	144°40'40"W	Au	Placer	Au
Unnamed	63°11'13"N	144°57'39"W	Zn, Pb	Bedrock	Zn

Table 1: Local Mineral Occurrences and Mining Operations

	1				
Kraemer Creek Mine	63°7'51"N	144°38'56"W	Au, Ag, Cu, PGE	Placer	Au
Lime Creek Mine	63°7'56"N	144°38'34"W	Au, Ag, Cr, Cu, Pb, PGE	Placer	Au
Bedrock Creek Mine	63°8'16"N	144°38'9"W	Au, Ag, Pb	Placer	Au
Russian John Creek Prospect	63°6'25"N	144°40'51"W	Au, Ag, PGE	Placer	Au
Unnamed	63°11'4"N	144°58'22"W	Cu, Fe, Mn	Bedrock	Cu
Daisy Occurrence	63°8'22"N	144°59'2"W	Cu, W	Bedrock	Cu
Unnamed	63°10'23"N	144°59'49"W	Cu, Ag, Au, Pb	Bedrock	Cu
Chisna River Mine	63°4'21"N	144°48'43"W	Au, Ag	Placer	Au
Unnamed	63°11'11"N	145°0'21"W	W, Fe	Placer	W
EEK Occurrence ²	63°15'18"N	144°41'52"W	Fe	Bedrock	Fe
Lo Goat Occurrence ²	63°15'48"N	144°44'16"W	Fe	Bedrock	Fe
Unnamed	63°11'57"N	145°1'8"W	Ag, Pb	Bedrock	Ag
Zygoat Occurrence ²	63°16'6"N	144°43'19"W	Fe	Bedrock	Fe
Grubstake Creek Mine	62°47'6"N	144°2'56"W	Au, Ag, Cu	Placer	Au
J.D. Lyons Prospect	62°46'51"N	144°2'49"W	Cu	Bedrock	Cu
Unnamed (Porphyry) ³	62°47'16"N	144°1'48"W	Au, Cu, Fe, Pb, Zn	Bedrock	Au
Unnamed (Porphyry) ³	62°47'24"N	144°0'36"W	Au, Cu, Fe, Pb, Zn	Bedrock	Au
Boulder Creek Mine	62°46'47"N	144°0'36"W	Au, Mo	Placer	Au
Unnamed	62°48'0"N	144°1'12"W	Au, Ag, Pb, Zn	Bedrock	Au
Unnamed	62°47'24"N	144°0'0"W	Au	Bedrock	Au
Slope Creek Mine	62°47'27"N	144°0'0"W	Au, Ag, Bi, Cu	Placer	Au
Unnamed	62°45'36"N	144°2'24"W	Ag, Cu, Pb	Bedrock	Ag
Slope Creek Mine	62°47'16"N	143°59'27"W	Au, Ag, Bi, Cu	Placer	Au
Boulder Creek Mine	62°46'32"N	143°59'38"W	Au, Ag, Bi, Cu	Placer	Au
The Dome Prospect	62°48'36"N	144°4'48"W	Cu, Pb	Bedrock	Cu
Silver Shield Prospect	62°45'3"N	144°1'51"W	Ag, Pb, Au, Ba, Cu	Bedrock	Ag
Unnamed	62°48'23"N	143°59'16"W	Au	Bedrock	Au
Neversweat, Conkle Prospect	62°49'11"N	144°6'0"W	Cu, Pb, Ag, Au	Bedrock	Cu
Willow Creek Mine	62°44'30"N	143°59'45"W	Au	Placer	Au
Silver Creek Prospect	62°43'58"N	144°3'17"W	Ag, Au, Cu, Pb, Zn	Bedrock	Ag
Gold-Quartz Prospect	62°44'9"N	144°0'28"W	Ag, Au, Cu, Pb, Zn	Bedrock	Au
Hidden Creek Prospect	62°45'36"N	144°9'36"W	Au	Placer	Au
Elizabeth Prospect	62°48'0"N	144°10'12"W	Cu, Mo, Ag, Pb, Sn, Zn	Bedrock	Cu
Ahtell Creek Prospect	62°43'47"N	144°0'0"W	Au	Placer	Au
Unnamed	62°49'47"N	144°8'24"W	Au	Bedrock	Au
Unnamed	62°50'23"N	144°6'35"W	Au, Cu	Bedrock	Au
Unnamed	62°49'11"N	144°10'12"W	Fe	Bedrock	Fe
Unnamed	62°43'47"N	144°7'48"W	Cu, Au, Pb, W	Bedrock	Cu
Unnamed	62°43'47"N	144°9'0"W	Au, Ag, Zn, Pb	Bedrock	Au
Unnamed	62°47'52"N	144°13'4"W	Pb, Ag	Bedrock	Pb
Indian, Blue Ridge Prospect	62°49'11"N	144°13'11"W	Ag, Au, Cu, Pb	Bedrock	Ag

Unnamed	62°52'22"N	144°0'43"W	Au	Bedrock	Au
Unnamed	62°52'44"N	144°4'44"W	Fe, Au	Bedrock	Fe
Snipe Prospect	62°51'36"N	144°12'0"W	Th, U	Bedrock	U
Unnamed	62°54'0"N	144°4'48"W	Cu, Au, Mo	Bedrock	Cu
Tom Burns, Silver Circle Prospect	62°51'25"N	144°18'0"W	Pb, Ag, Au, Cu, Ba, Zn	Bedrock	Pb
Unnamed	62°52'8"N	144°17'45"W	Cu, Pb, Ag	Bedrock	Cu
Granite Creek Prospect	62°56'23"N	144°9'36"W	Au	Placer	Au
Unnamed	62°56'13"N	144°18'54"W	Fe	Bedrock	Fe

1. Refers to mineralization directly related to the Chisna Northwest targets

2. Refers to the Delta VMS property of Grayd Resource Corporation of Vancouver, B.C., Canada

3. Refers to mineralization directly related to the Chisna Southeast targets

These deposits can be divided into three main types as follows:

- 1. Placer gold-silver+/- PGE derived from Tertiary to Holocene gravels
- 2. Bedrock porphyry related quartz base+/- precious metal vein
- 3. Bedrock porphyry related bulk mineralization, including skarns

6.1 Placer Gold, Silver and PGE

Of the extensive placer workings on or adjacent to the Chisna properties, the most intense period of placer mining occurred in the early 1900's, although placer operations continue to the present day. Estimated placer gold production for the Chistochina district from the late 1800's to the present is approximately 180,000 oz. Estimates of historical production from the Miller Gulch Mine and Slate Creek Mines, both of which are located on and adjacent to the Chisna Northwest claim block, was over 50,000 oz from each operation over their entire operational lives. The Miller Gulch mine was still being operated in the 1980s by Hecla Mining Company.

Placer gold was found in Tertiary conglomerates and Holocene fluvial sediments derived from reworked Tertiary gravels. Most of the paleo-river and stream channels originating in this area were found to contain placer gold, mostly in perched channels preserved on the margins of the modern drainages. Significant placer potential remains in the district both in down-faulted blocks of Tertiary gravels and conglomerates, and in similar units which are covered by more recent sediment packages and were thereby concealed from historic prospecting and mining activities.

Varying amount of PGEs are present with the placer gold. Historic production records suggest that on average, for every 100 oz of gold recovered during mining operations, approximately 1 oz of PGEs was also recovered.

6.2 Bedrock Porphyry Related Base and Base Plus Precious Metal Quartz Vein

Numerous quartz diorite, quartz monzodiorite and quartz granodiorite porphyry dikes and stocks are present across the Chisna claims. Quartz rich porphyry systems typically generate quartz vein and stockwork systems which contain associated sulfide minerals such as pyrite, chalcopyrite, bornite, sphalerite and galena. Historical staking was undertaken along many quartz veins and quartz filled

faults, many of which contain base metal mineralization with various levels of accompanying precious metal mineralization. None of these saw significant production, though many test pits are located along such structures. Quartz vein mineralization accounts for the majority of the bedrock mineralization occurrences presented in Table 1.

6.3 Bedrock porphyry Related Bulk Mineralization, Including Skarns

A hallmark of porphyry intrusive is their associated bulk tonnage, base and precious metal mineralization in the form of alkalic porphyry copper-gold or calc-alkalic copper-silver (+/-gold)-molybdenum systems. Geological mapping by ITH has demonstrated that the Chisna area contains porphyry copper systems of the gold and sometimes silver-rich variety, of possibly alkalic affinity. Those bedrock mineral occurrences presented in Table 1 as having the principal mineral iron, and in one instance chrysotile, are skarns related to emplacement of these porphyry stocks into carbonaceous sediments, with associated metasomatism of the host rocks through heating and interaction with magmatic fluids.

6.4 Recent Exploration

The following is not an exhaustive list but characterizes the type of exploration activities ongoing during each recent decade on and adjacent to the Chisna claims, highlighting those efforts yielding significant results.

1960s:

The Alaska Department of Natural Resources, Mines and Minerals Division, conducted fieldwork in the area of the Southeast Chisna claims from 1963-1965. This work mapped and defined the mineralogy of many of the intrusive phases in the area, and through stream sediment geochemistry identified copper, zinc, lead and molybdenum anomalies. After publications of these results in 1966, this work quickly attracted further claim staking and exploration activity to the area in search of significant bedrock-hosted mineral deposits. This work was instrumental in expanding prospecting interest in this area beyond its long-known placer gold potential.

1970s:

Exploration was undertaken in the Slate Creek area of what is now the Northwest Chisna claim block by Resource Associates of Alaska Inc. from 1977-1978. This work identified extensive bedrock copper-goldsilver mineralization. Geological mapping, plus stream sediment and bedrock geochemical sampling was undertaken. VLF and ground magnetic surveys were also conducted. Two foot holes were drilled into bedrock using a handheld drill to provide geochemical samples. Exploration identified a narrow structurally controlled siliceous breccia zone with a wider (200 foot) alteration envelope, with unknown strike length due to talus cover. This was referred to as the "POW" target.

1980s:

The United States Bureau of Mines conducted fieldwork in the area of the Chisna claims from 1984 to 1988. This work sought to identify gold sources for the placer gold deposits in the area, with the further goal of expanding the understanding of the bedrock geology and mineralization in general. This work concluded that in the Slate Creek area (Northwest Chisna claim block) the placer gold was partially derived from local gold-rich metasomatized argillites which had been intruded by porphyry dikes and stocks. PGEs were found to be concentrated in the porphyry sills and dikes. Native gold, silver, copper and PGEs found in the local placer deposits were concluded to be the erosively removed and fluvially concentrated products of supergene alteration processes affecting bedrock mineralization zones. Crucially, these workers supported the association of local mineralization with the frequent porphyry intrusives in the area.

Exploration work was ongoing through the 1980s on the "Coppertone Claims", which are now part of the Northwest Chisna claim block. This work identified the Slate Creek area as hosting a porphyry copper deposit because of the porphyry lithologies encountered, the identification of propylitic alteration, elevated base metal and silver values (in addition to gold values which had originally attracted attention to the area), and ubiquitous chalcophile mineralization. Speculation was also made that the Slate Creek area of the Northwest Chisna claim block could be host to an epigenetic, "Abitibistyle" quartz-vein lode gold deposit. This work downplayed a possible genetic association between the adjacent and underlying porphyry systems and the quartz-base metal-precious metal veins.

From 1979 to 1981 Resource Associates of Alaska ("RAA") conducted exploration work including geological mapping, geochemical (soil, silt and bedrock) sampling and a limited amount of diamond drilling at the Powell Gulch prospect, which now includes the POW occurrence in the Northwest Chisna claim block. Mention is made of a ground-based magnetic survey, but the equipment used is not provided and results are presented only in line results on a local "mine grid" that cannot be correlated to a known geographic reference system.

This RAA data was acquired by ITH in early 2010. A suite of approximately 500 field samples were analyzed for copper, gold and silver. This geochemical sampling was not quality controlled, and exact locations are uncertain due to the use of an uncorrelated local "mine grid" which now hinders projection of this data. However, review by the author shows broadly similar values for copper, silver and gold to those collected by ITH in the 2006-2008 field seasons (see section 9.0 of this report), although the lack of modern control procedures and location surveying render this information of historical value only.

Field mapping by RAA identified numerous quartz stockwork zones of copper-gold and copper-goldsilver mineralization. The main occurrence, now known as the POW occurrence, was described as a two-foot (< 1 metre) thick siliceous breccia within a 75-100 foot (23-30 metre) wide zone of intense alteration and stockwork pyrite-chalcopyrite. Strike length is inferred to be less than 1000 feet (300 metres) based on the geological maps provided with the RAA reports. The highest reported historical (non- NI 43-101 compliant) results of hand sampling from the POW occurrence yielded 1.80 oz/t (61.71 g/t) gold and 7% copper. Three drill holes were drilled into the POW occurrence in 1980. These holes cannot be accurately located due to use of the local "mine grid". This drilling is described in a 1980 report by RAA summarizing results of field work for that season. The report states that:

"The first drill hole (DDH-1) was spotted to intersect the discovery outcrop of the gold-copper vein at about 120 feet in depth but the core from this hole contained only minor amounts of chalcopyrite.

The second hole was sited 60 feet from the discovery which resulted in the intersection of sporadic chalcopyrtiequartz-pyrite veinlets and replacement masses from 14 feet to 100 feet. Below 100 feet the mineralized interval is apparently terminated by a fault.

The mineralized intercept in DDH-2 was sampled at two foot intervals between depths of 16 to 110 feet. The highest values obtained for any two foot sample were 3.4 % copper, 0.9 oz/t silver, and 0.25 oz/t gold. Analytical results have indicated that 68 feet of the sampled interval averaged 0.676 % copper, 0.306 oz/t silver, and 0.0416 oz/t gold. The best 30 feet of this interval, which is from 42 to 72 feet, contained 0.93 % copper, 0.35 oz/t silver, and 0.06 oz/t gold.

The third hole (DDH-3) started and ended in a medium grained diorite dike which contained up to three percent magnetite and appears to be responsible for the N45W trending magnetic high located south of the discovery area (1978 magnetic survey). The abrupt termination of this magnetic feature (dike) to the east strongly supports the presence of a fault cutting through the saddle."

These historic, non- NI 43-101 compliant results indicate that structural complications such as post-mineral faulting may exist at depth in the POW occurrence, or alternatively, the structure may dip in an unexpected direction within the subsurface or else has a non-planar geometry.

1990s:

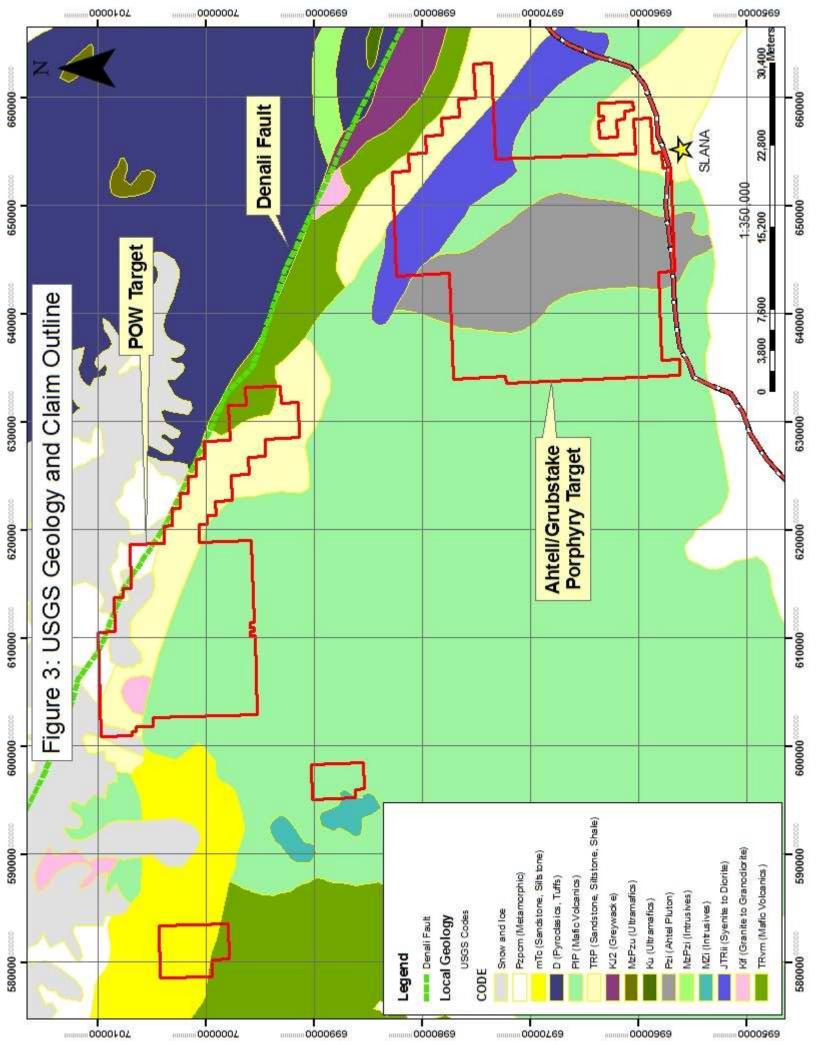
Homestake Mining Company was active on the Southeast Chisna claim block area during the 1990s. Work by Homestake mapped out various porphyry mineralization and alteration facies in and around the Ahtell granodiorite pluton. A series of 84 rock samples collected from the Grubstake Creek to Slope Creek area showed elevated gold values, as did soil samples collected over the same area. Homestake's work identified silicified zones containing as much as 15% pyrite, quartz-carbonate veins containing pyrite, chalcopyrite, arsenopyrite and galena, and chlorite-magnetite hydrothermal breccias cut by quartz-pyrite veinlets. Argillic and iron-carbonate alteration zones were also noted. These features occurred mostly within the hornfelsed host formations to the granodiorite and in the pluton itself. Drilling was not carried out as part of this exploration program. Many of the results of this work have been compiled by Ahtna Incorporated as part of its business development interests.

2000s:

International Tower Hill staked the Chisna land in 2006, following an agreement with AngloGold Ashanti to acquire a series of nine properties across Alaska. At this time the Chisna claims were open ground, having been dropped by previous land title holders. An extensive geological field mapping and geochemical surveying program was undertaken. An expert consultant was engaged to assess ITH's new Alaskan properties. Airborne magnetic surveying was conducted over the Northwest Chisna and Southeast Chisna claim blocks. The survey of the Northwest Claim block was conducted by Fugro Airborne Surveys Corp., and was collected on a DIGHEM multi-coil, multi-frequency electromagnetic

system, supplemented by a high sensitivity cesium magnetometer. While the author reviewed a copy of the Fugro summary report to ITH's subsidiary Talongold US (LLC), and believes the data to be accurate, a graphical copy of the electromagnetic results was not included with the Fugro report, and these results are excluded from this report as they cannot be projected. The magnetometer results are included in this report in figure 5A, as these were available and could be integrated into the Chisna data available to the author. The magnetometer unit used for the survey was a Fugro D1344 processor with Scintrex CS2 sensor, calibrated to a Fugro CF1 base station with timing provided by integrated GPS. Survey coverage was of approximately 699 line kilometers on a line spacing of 200 metres, with a 305°/125° azimuthal direction. Sensitivity of the airborne magnetometer unit is approximately 0.01 nT with a sampling rate of 10 samples per second.

The airborne magnetic survey of the Southeast Chisna claim block was conducted by EDCON-PRJ Inc. The system was a Picodas HeliMag cesium-vapour magnetometer calibrated to a GeoMetrics 858 Base Station magnetometer. Total flown line length is not specified in the EDCON-PRJ report, but flight lines are specified as north-south trending with a 50 metre spacing and 200 metre spaced east-west tie lines. Results of this survey are shown in figure 5B of this report. Sensitivity of the airborne magnetometer unit is approximately 0.01 nT with a recording interval of 0.1 seconds.


Geochemical sampling consisted of river silt, soil and bedrock grab sample assays. Elements assayed were Au, Ag, As, Sb, Cu, Pb, Zn, Al, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Fe, Ga, Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Rb, Re, S, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y and Zr (50 elements). No drilling, permanent camp construction or other significant exploration activities were conducted. All work was carried out by Northern Associates Inc. of Alaska, a geological service company, on behalf of ITH. Total expenditures by ITH on field exploration and geophysical surveying from 2006-2008 were approximately \$880,000.00. This includes helicopter costs and consulting services, but excludes land acquisition and land maintenance costs.

7.0 Geological Setting

The Chisna Claims are located south of the Denali Fault on the south side of the South-Central Alaska Range (figure 3). The Denali Fault is a large dextral strike-slip fault which extends from British Columbia to central Alaska. The Denali Fault is a major shear accommodation structure which allows transverse motion between the Pacific and North American tectonic plates. The Denali Fault is active and has been the focus of numerous large and recent earthquakes. Various splays and parallels of the Denali Fault cut across the Northwest Chisna claim block, at least one of which has been named (i.e. the Slate Creek Fault, a synthetic shear to the Denali). The Denali Fault is also a major terrane boundary, separating the Upper Paleozoic to Mesozoic rocks of the Chulitna terrane to the south from the Lower Paleozoic Pingston and McKinley terranes to the north.

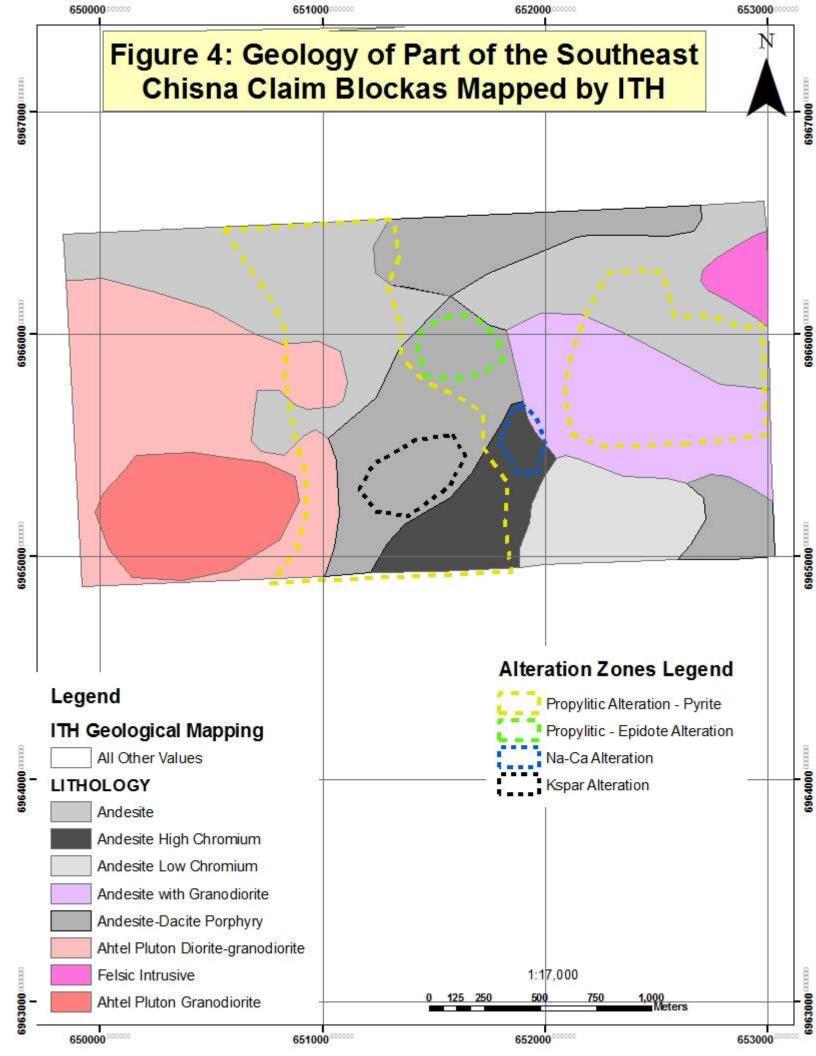
7.1 Property Geology

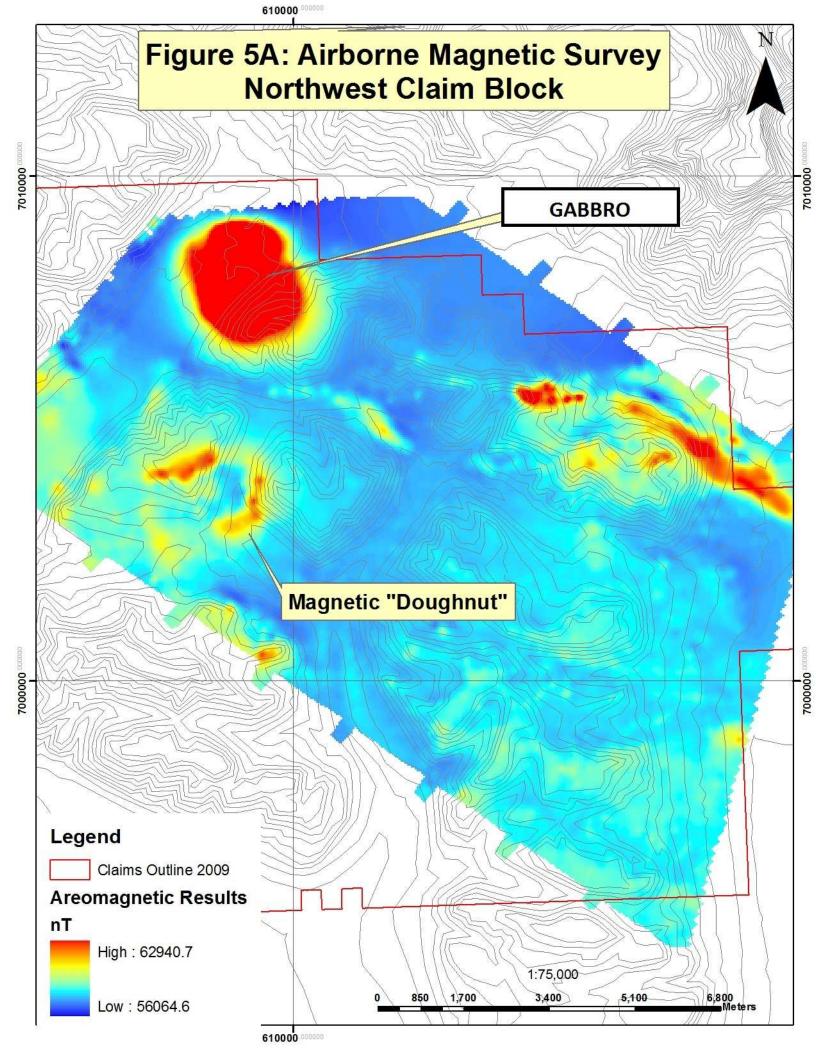
The bedrock of the Northwest and Southeast Chisna claim blocks is part of the Chulitna terrane. The Chulitna terrane is defined by a southeast vergent overturned syncline, composed of various mostly mafic volcanic and ophiolitic units such as serpentinites and basalts at its Paleozoic base, to the

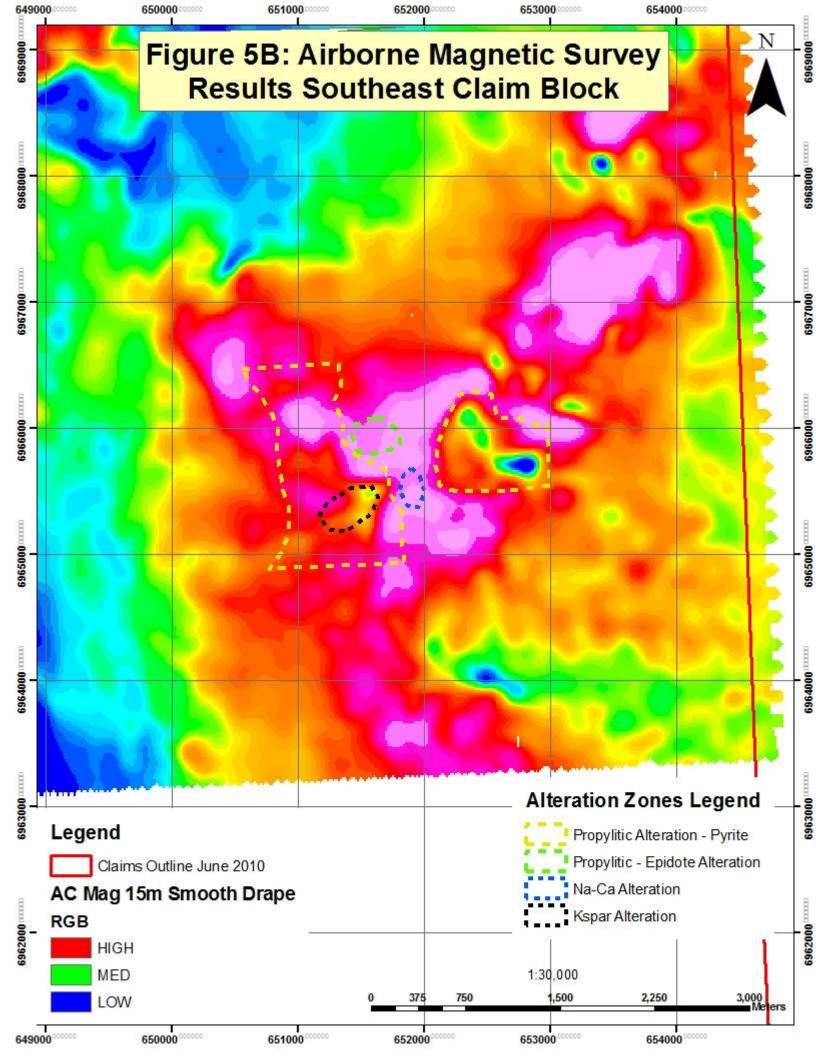
sandstones, limestones, cherts, argillites, and mixed siliceous and mafic volcanics of its Mesozoic upper units. The Mesozoic is marked by intrusion of quartz monzonite and diorite porphyry stocks. Porphyry mineralization and alteration is associated with the intrusion of these stocks.

Local-scale geological mapping is in its early stages at both the Chisna claim blocks. At the Northwest Chisna claim block, workers have identified extensive propylitic (pyrite-chlorite-epidote) and local magnetite alteration facies related to the porphyry stocks. Some chalcopyrite is observed with the pyrite. These suggest that both sulfide-rich and sulfide-poor porphyry system may have developed here. The host rock to the porphyry intrusions at POW are porphyritic andesites and dacites of the Chisna Formation, and flyshes, cherts and limestones of the Mankomen Formation. These older rocks are overlain by Tertiary volcanics and non-marine shales, sandstones and conglomerates of the Gakona formation. At this point, the only contextually complete maps of this claim block are provided by the USGS, as illustrated in figure 3.

In the Southeast Chisna block, the same Chulitna terrane rocks host an approximately 60 kilometer (north-south) and 20 kilometer (east-west), irregularly shaped quartz granodiorite porphyry stock referred to as the Ahtell Pluton. The stock varies in modal composition from diorite to quartz granodiorite. The earliest fine grained diorite porphyry dikes are heavily altered, whereas the later coarse grained diorite porphyry dikes are reported to be much less altered. Local host rocks to the pluton are andesitic to dacitic volcanics. Zoned porphyry style alteration patterns are present in the stock and volcanic host rocks, ranging from what is inferred to be a less that 400 metre wide potassic feldspar core to a broad propylitic halo. Basic geological mapping of lithologies and alteration as provided by ITH is presented in figure 4.


Sulfide-bearing quartz-carbonate veins are common within and near the contact zone between the Ahtell Pluton and its host volcanics. These veins contain pyrite, chalcopyrite, sphalerite, galena and tetrahedrite. Hydrothermal breccia zones are also present which have been noted by past workers.


Results of the airborne magnetic surveying undertaken by ITH are provided in figures 5A and 5B. Magnetic highs are interpreted to be associated with intrusive bodies. The magnetic "doughnut" present in the area of the POW occurrence may be associated with zoned magnetite alteration around a deep porphyry system. Such "magnetic doughnuts" are common porphyry exploration targets as they allow for vectoring into the centre of the porphyry system where the highest grades of bulk mineralization typically occur.

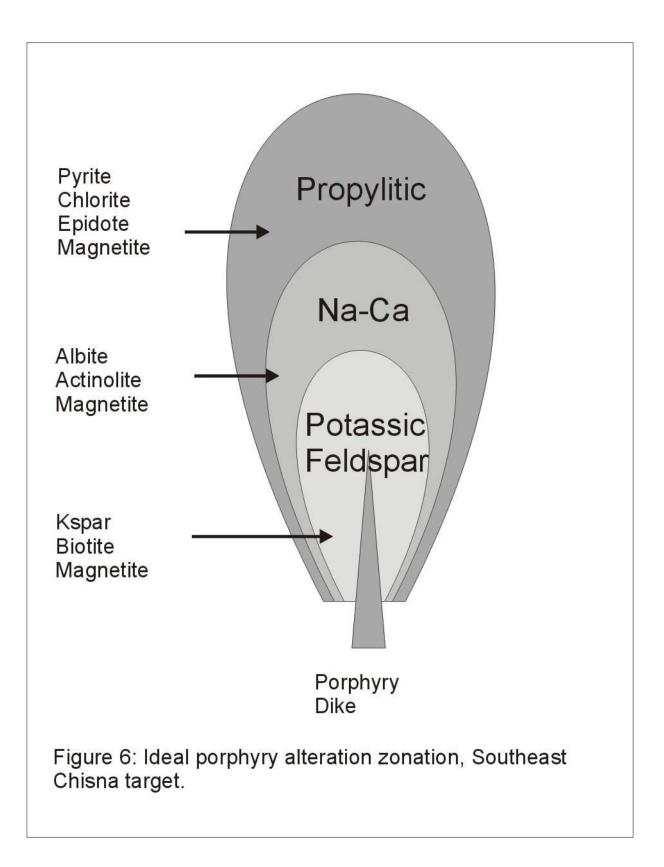

8.0 Deposit Type

Two deposit types are present at the Chisna claims, exclusive of placer deposits. These are porphyryassociated bulk base metal-precious metal mineralization and structurally-hosted quartz vein gold plus base metal deposits.

The rocks underlying the Northwest Chisna claim block host many porphyry intrusions as narrow dikes, and a few larger stock-like bodies, of dioritic to monzonitic composition. In the eastern, step-like appendage (as defined by the claim outline) to the main Northwest claim block, fieldwork in 2008

identified a diorite stock that was observed to host a hydrothermal breccia pipe. Near the diorite but at its contact with host limestones, skarn mineralization and garnet hornfels were developed in the host rocks, which hornfels carried significant copper grades in massive pyrrhotite and chalcopyrite mineralization pods up to 30 cm in size. Chalcocite was observed to locally coat rock surfaces.

On the eastern half of the main Northwest Chisna claim block, hydrothermal breccia pipes were observed to cut across porphyritic dacitic volcanics. At the POW structure on the western half of the main Northwest Chisna claim block, magnetite breccia pipes are present amidst numerous porphyry dikes. Taken together, these observations support the presence of a number of porphyry systems along an approximately 60 km northwest to southeast strike length.


The main mineralization zone at the POW occurrence is a siliceous and sulfide bearing, mineralized vein system occupying a fault structure. This structure displays chlorite-epidote alteration, limonite after pyrite (supergene) alteration signatures, and milky, crystalline quartz, which encases remnant pyrite and chalcopyrite. The presence of crystalline quartz suggests this is not a porphyry-related epithermal vein structure. Speculation has been raised that this mineralization may be related to remobilization of porphyry base and precious metal mineralization during late tectonism, facilitated by hydrothermal fluids of unspecified origin. This type of mineralization is effectively quartz-vein associated gold of unknown affinity.

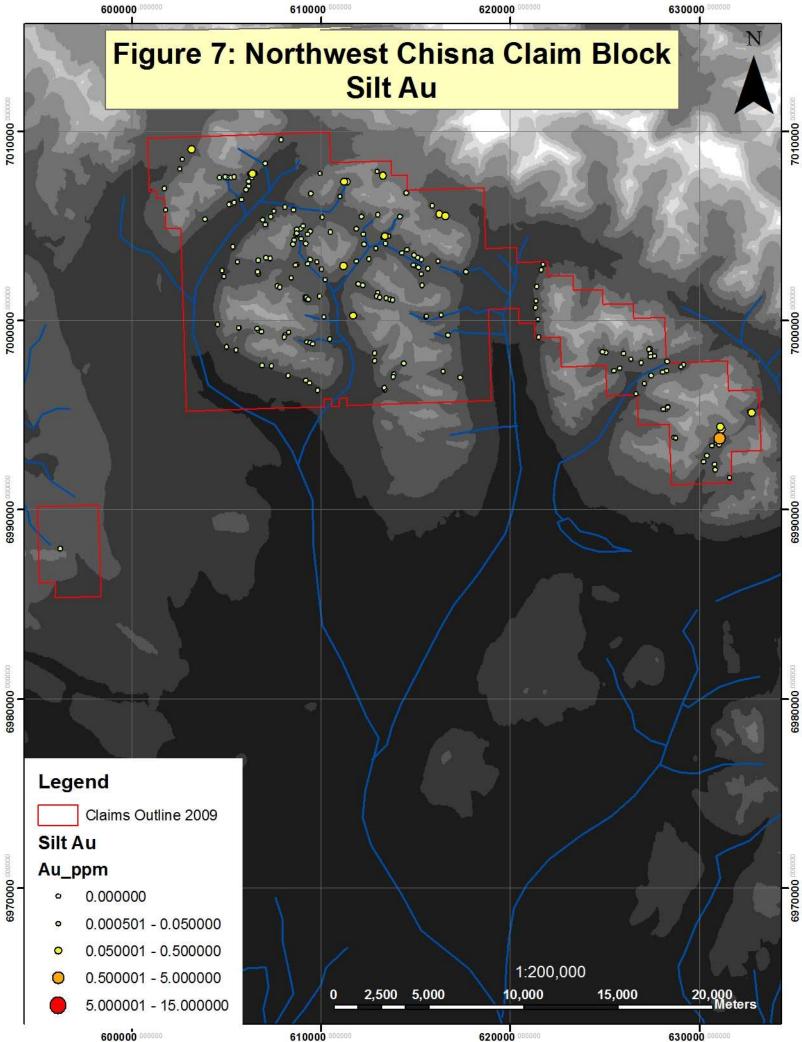
The lithological source of the PGE results found during historic placer mining may be a large gabbro body mapped by the USGS and ITH, as shown on figure 5A. Another possible source might be mafic dikes or undiscovered ultramafic units within the Mankomen Formation.

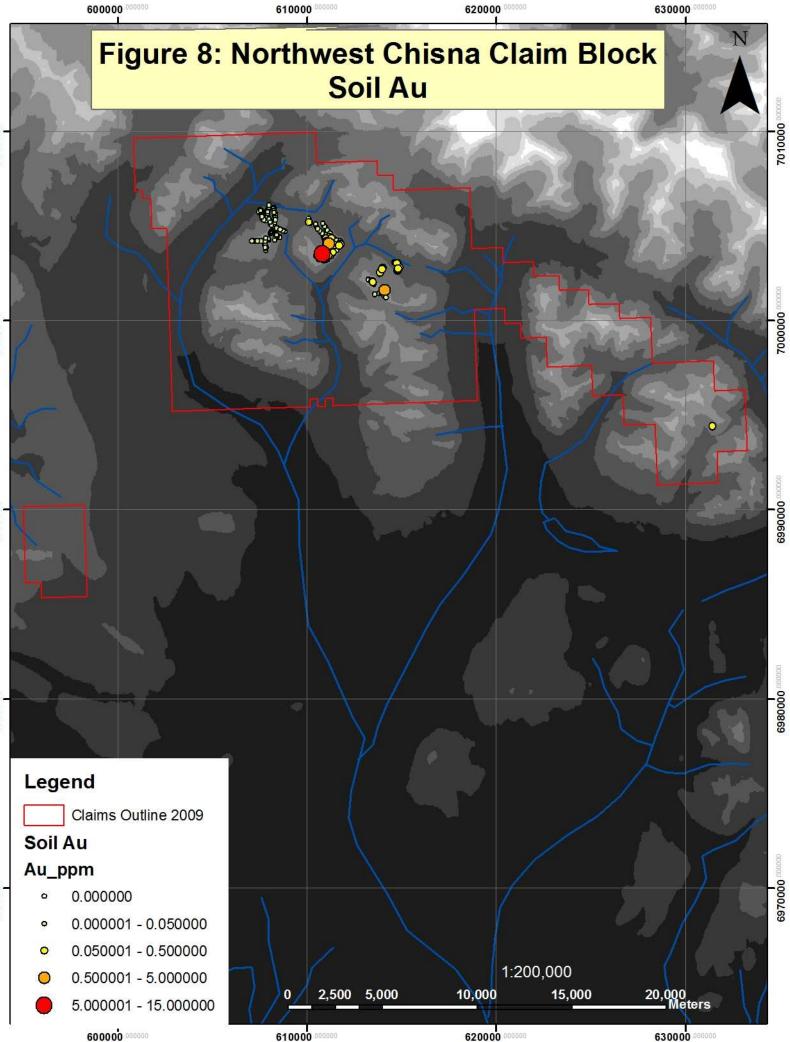
The Southeast Chisna claim block unquestionably hosts a gold-rich porphyry copper-gold system. This is supported by the presence of porphyritic lithologies, and zoned porphyry style alteration. Ideal porphyry zonation is illustrated in figure 6. A well defined, chalcopyrite plus pyrite rich, quartz veined potassic feldspar alteration core is present close to the contact of the Ahtell Pluton and the host volcanics. This alteration zone is defined by potassic feldspar, biotite and magnetite, with potassic feldspar only being developed in the diorite porphyry. Quartz veins in this zone are both sheeted and multi-directional, and lack alteration selvages. Quartz veins locally achieve significant widths (metres) and lengths where they occupy structures, and provided the focus for historical lode prospecting activities. Copper oxides and copper sulfates, though noted by past workers, are not provided in quantifiable levels.

The potassic zone is surrounded by a sodic-calcic alteration zone defined by extensive albite, actinolite and magnetite mineralization. This zone grades outward such that actinolite becomes increasingly retrograded to chlorite, and epidote becomes more abundant.

The sodic-calcic zones grades into a zone of propylitic alteration defined by pyrite, epidote, chlorite and magnetite. Vuggy quartz veinlets also contain chlorite, magnetite and calcite. Specular hematite has been noted lining fracture surfaces. This zoned alteration pattern is typical of gold-rich porphyry copper systems, and closely matches the idealized porphyry zonation presented in figure 6.

9.0 Mineralization

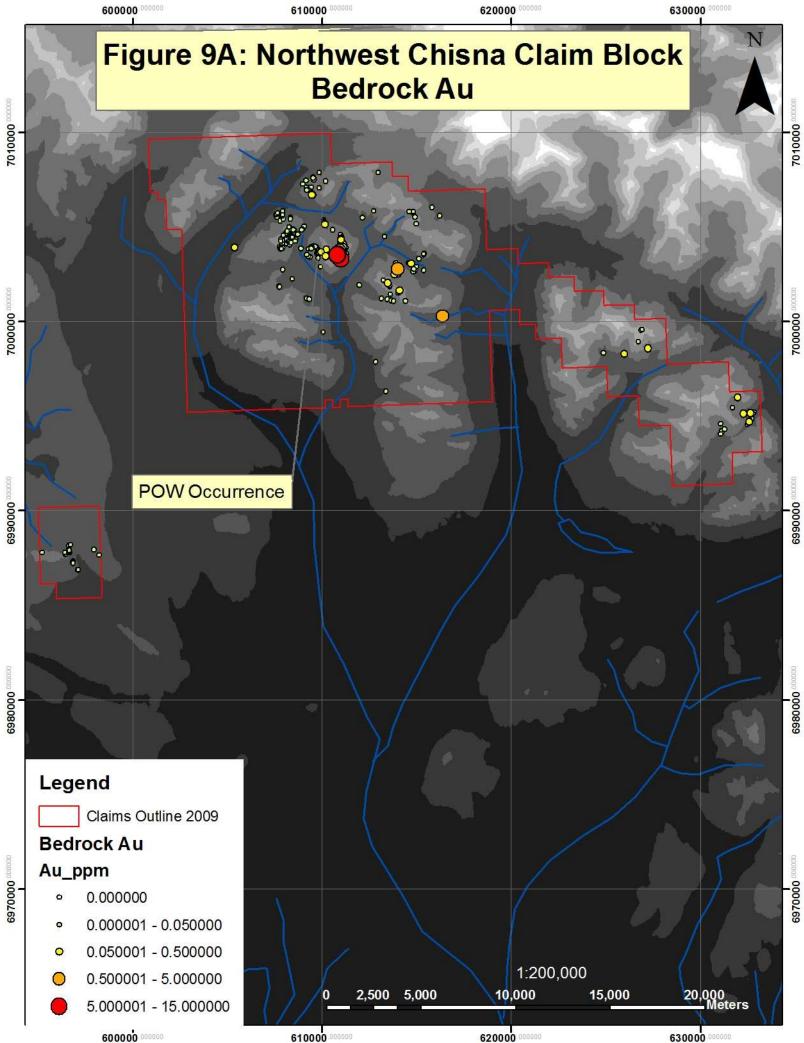

As part of the 2006-2008 field exploration program, ITH personnel collected a total of 236 silt geochemical samples, 749 bedrock geochemical samples, and 595 soil geochemical samples inside the boundaries of the Chisna claims.

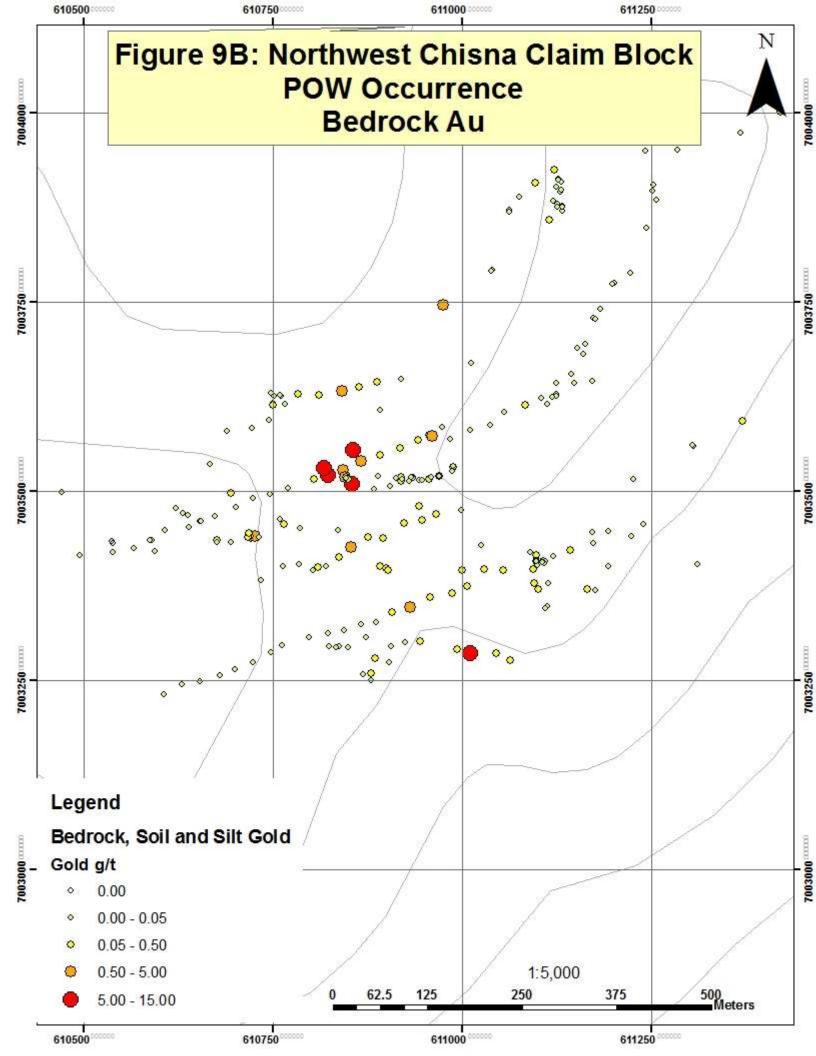

Elevated copper and gold values are found throughout the Northwest Chisna claim block. Gold results for the stream sediment (silt) surveys are shown in figure 7. Gold results from the soil surveys are shown in figure 8, and gold results from the bedrock survey are shown in figures 9A and 9B. During the author's visit to the property, a sample of pyritic float was collected from the vicinity of the POW occurrence as shown as Sample B in figure 10. The rock is densely plagioclase porphyritic andesite with a weakly chloritized groundmass, with about 5% modal percent pyrite. The rock likely represents the propylitized host to one of the nearby diorite porphyry intrusives. The rock is strongly iron oxide stained along fracture surfaces as shown in figure 11. A second sample was taken from the ridge which had been mapped by the ITH crews as comprising both diorite porphyry and volcanic units of the Mankomen Formation. The rock is clearly a quartz andesite with an aphanitic groundmass, but lacks perceptible sulfide mineralization as shown in figure 11.

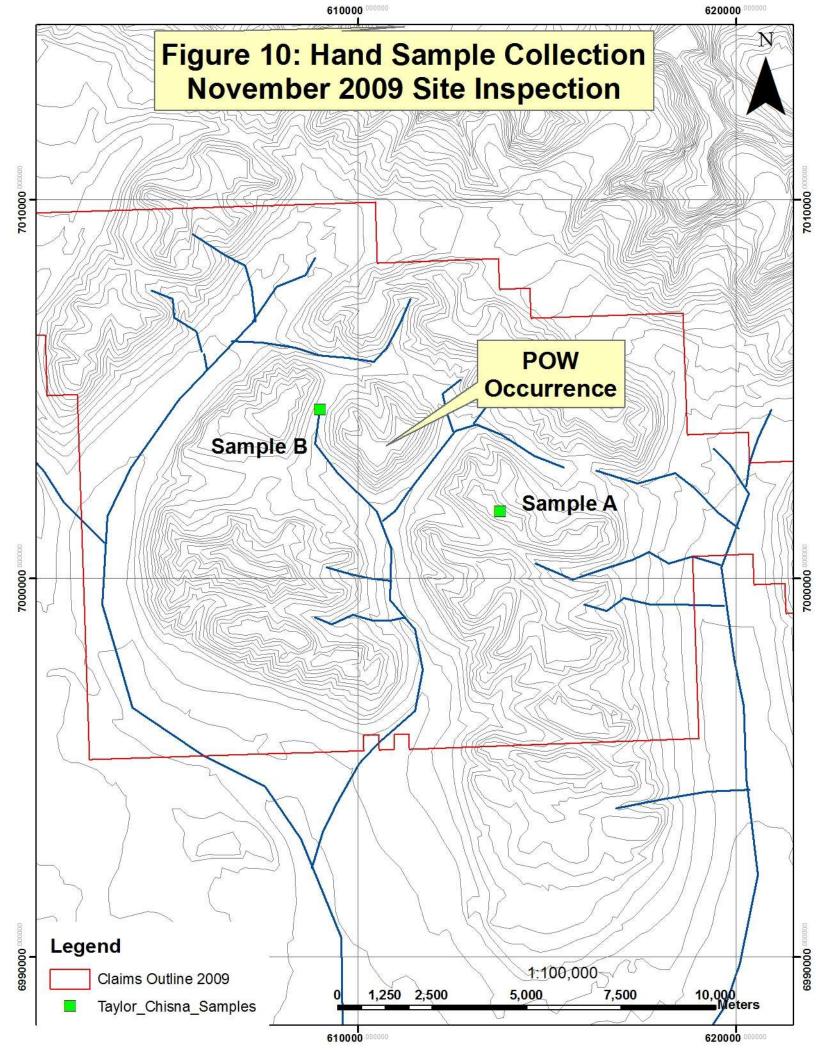
Copper results from silt, soil and bedrock samples are shown together on figure 12. Comparison of gold and copper values shows the strong association between the two values within the Northwest Chisna claim block.

Highest gold values occur within the POW structure, in sample RK210497, which assayed 13.0 g/t gold. This sample also assayed 110 g/t silver, and 0.06% copper. Some of the highest copper values also occur in the POW structure, in sample RK801834, which assayed 3.56% copper. This assay also assayed 0.03 g/t gold and 46.7 g/t silver. The highest copper assay came from approximately 2.2 kilometers from the POW occurrence, on the western flank of the same mountain. Sample RK210333 assayed 3.95% Cu, 0.0025 g/t gold, and 4.7 g/t silver in chalcopyrite rich silicified breccia hosted by volcaniclastic rocks.

Elevated copper and gold values are also found within the Southeast Chisna claim block. A 1: 70,000 scale wider view of all gold results in soil, rock and stream sediments is shown in figure 13. The single high grade sample in the northern part of the map represents sample RK803604, which returned 50.4 g/t gold and 14.7 g/t silver in a bedrock sample of iron oxide bearing quartz vein, and represents the highest grade gold sample returned to date from the Chisna project. Associated copper values are shown at the same scale in figure 14. A soil sample grid was conducted over the main porphyry target as shown in figure 15. For convenience, figure 15 also includes the four silt samples taken from the northwestern corner of this claim group, which were the only silt samples taken in this area. Because the Southeast Chisna claim group contains a large alteration zoned porphyry system, a few points can be said about sulfide ratios and gold versus copper values in this location using a general porphyry model as a guide.




7000000 00000 07


0000669

0000869

00000 0000269

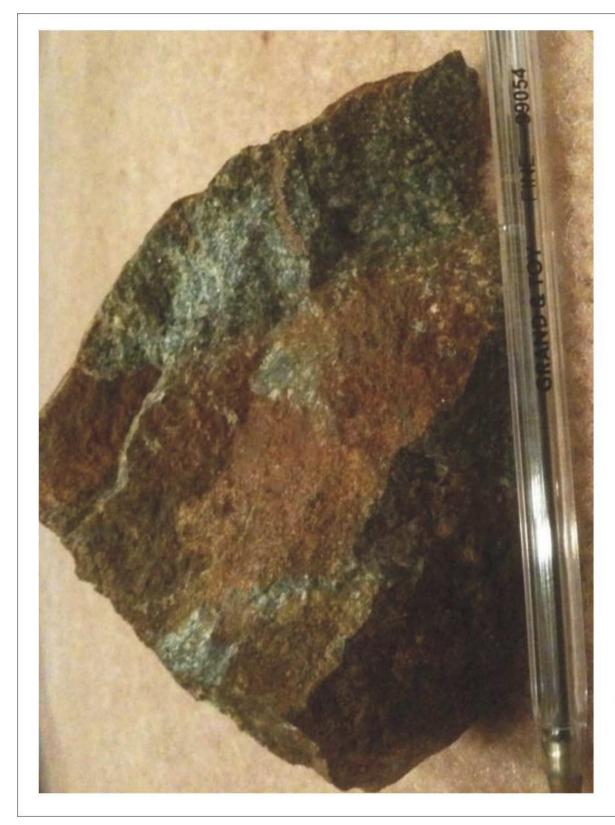
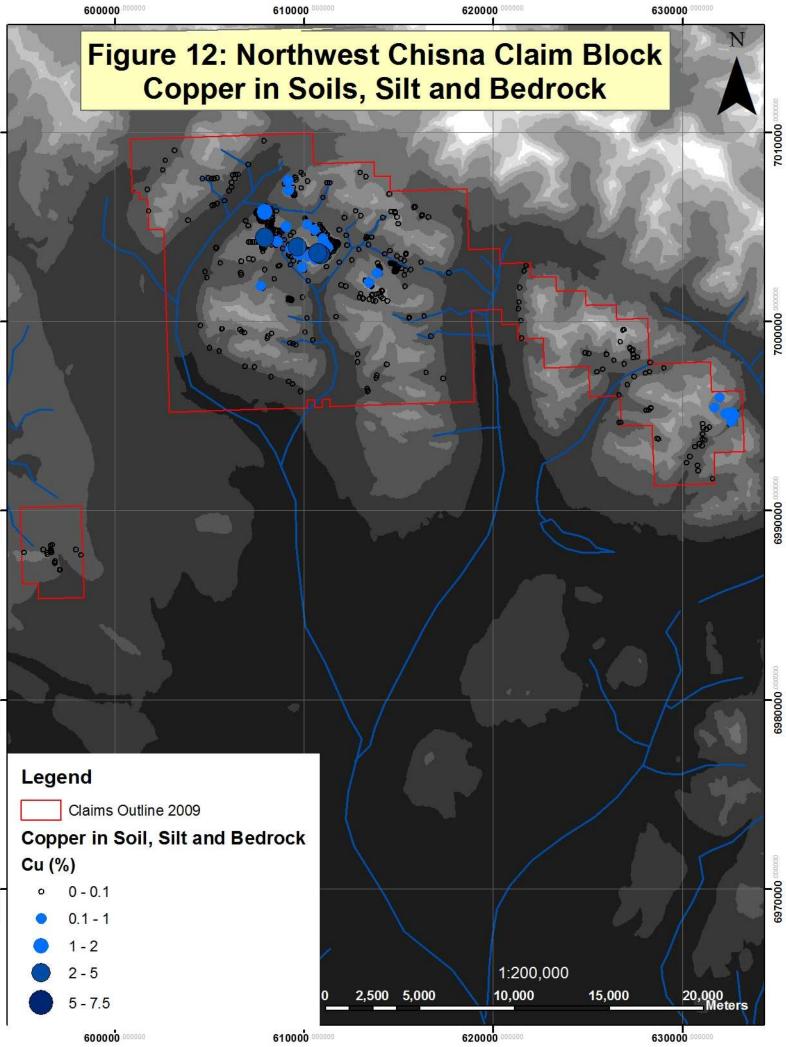
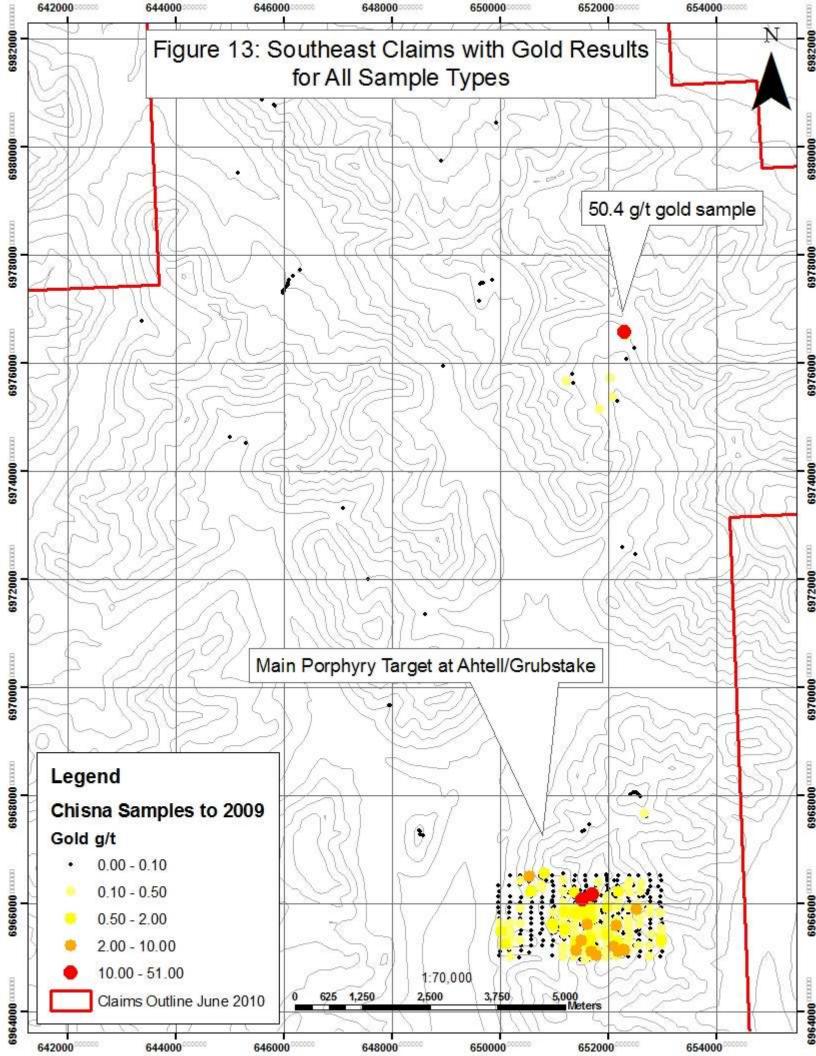
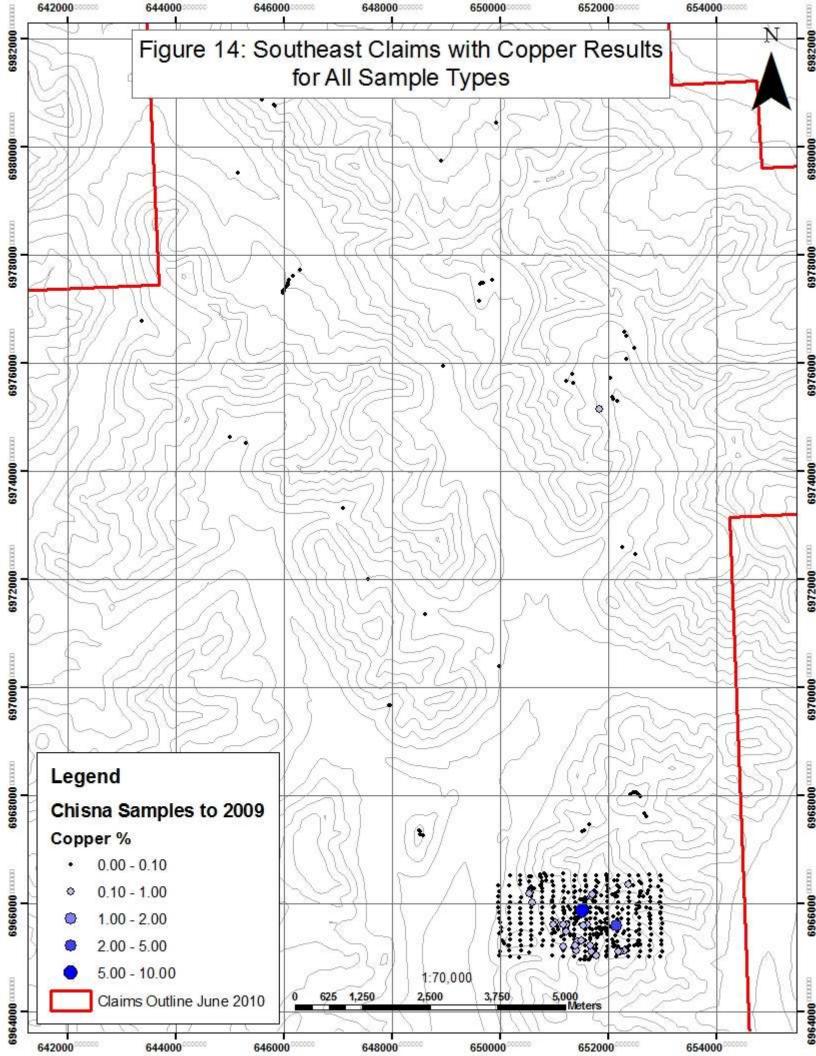
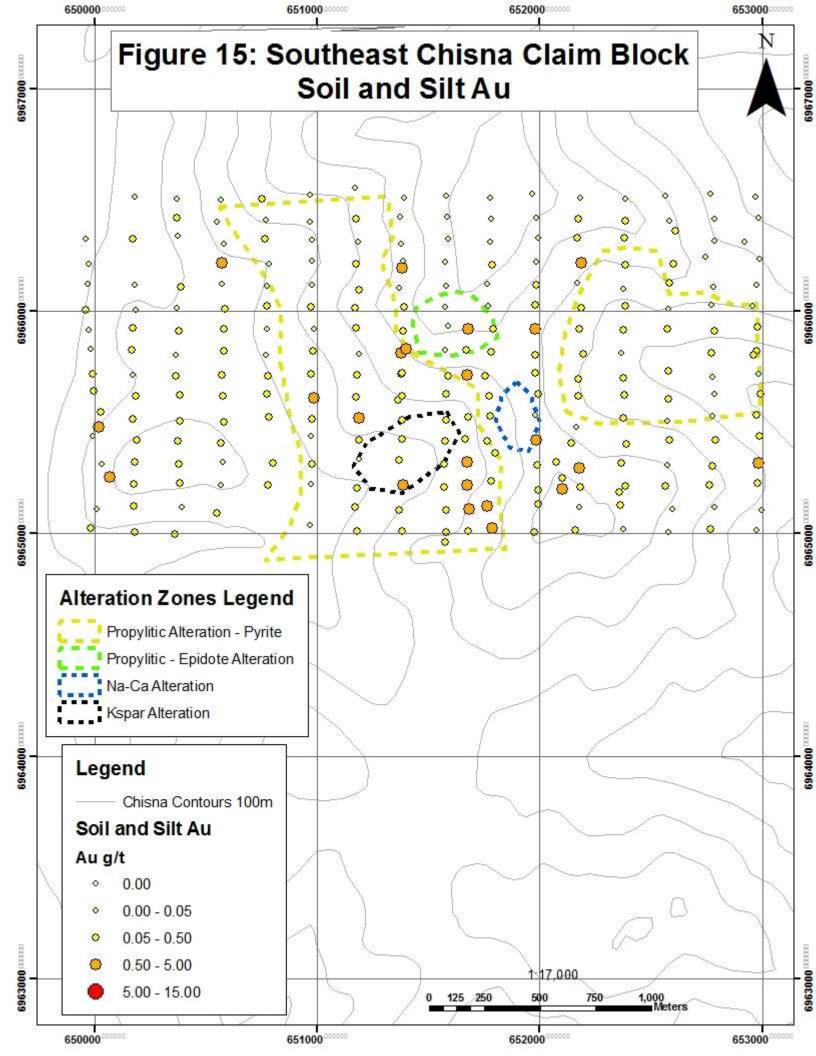
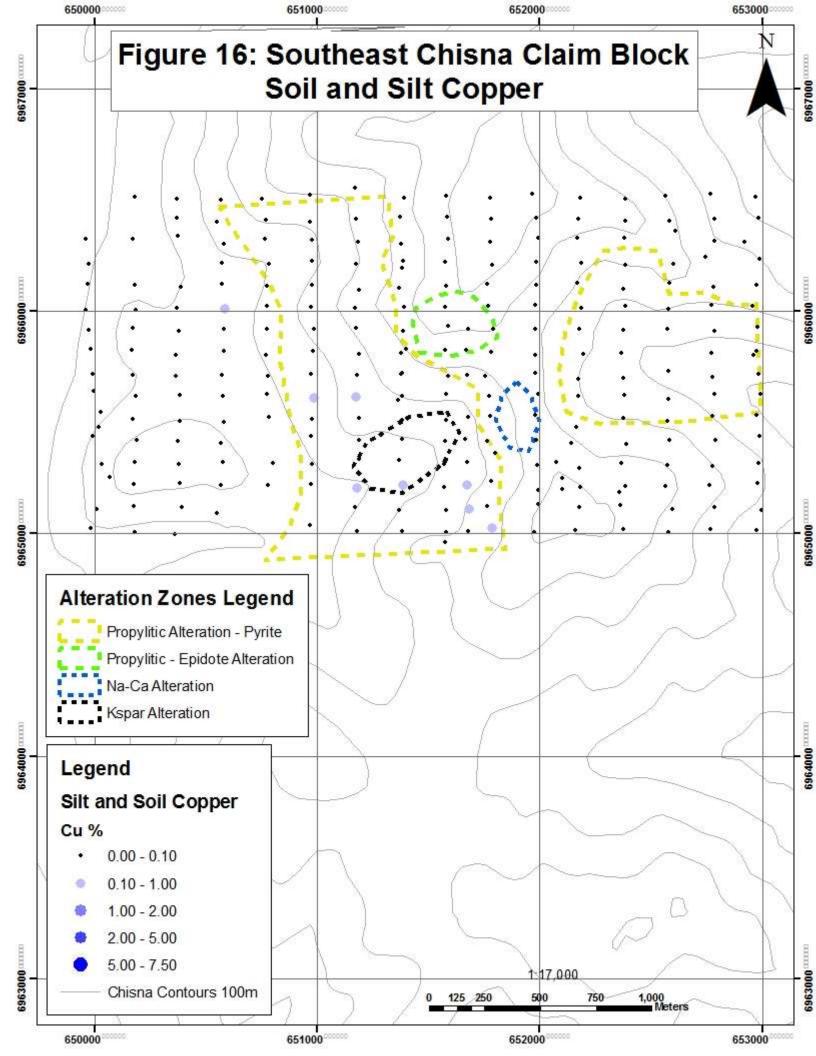
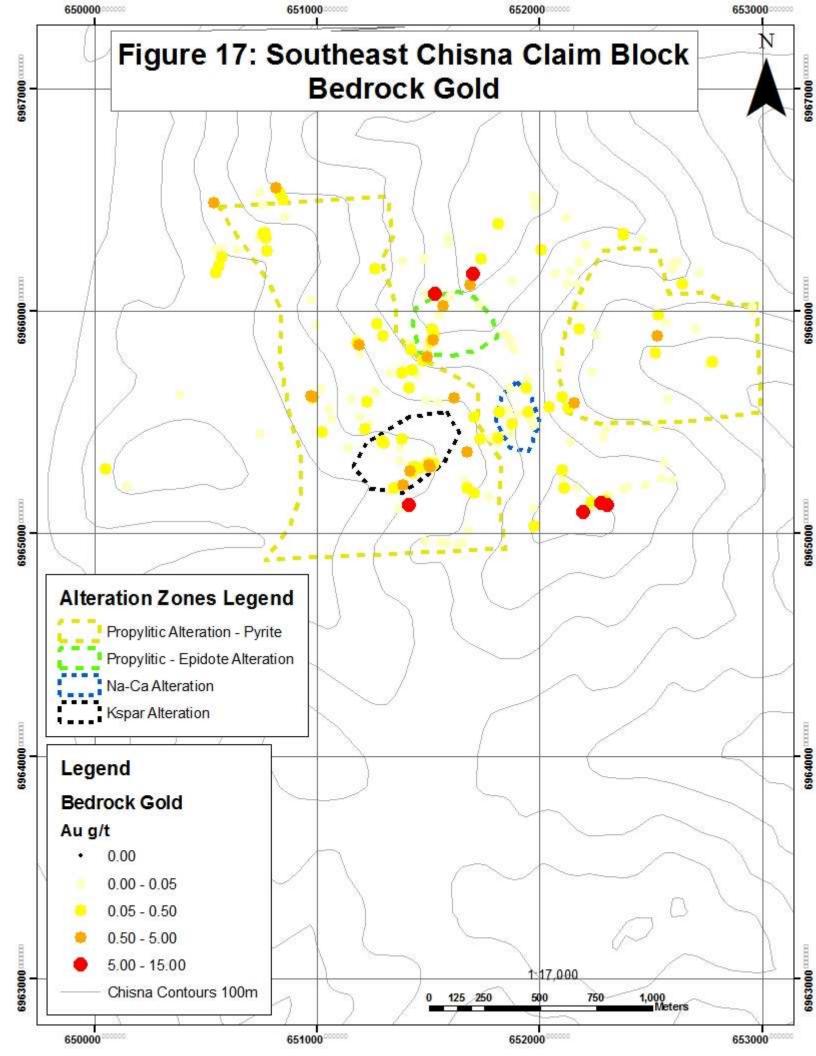
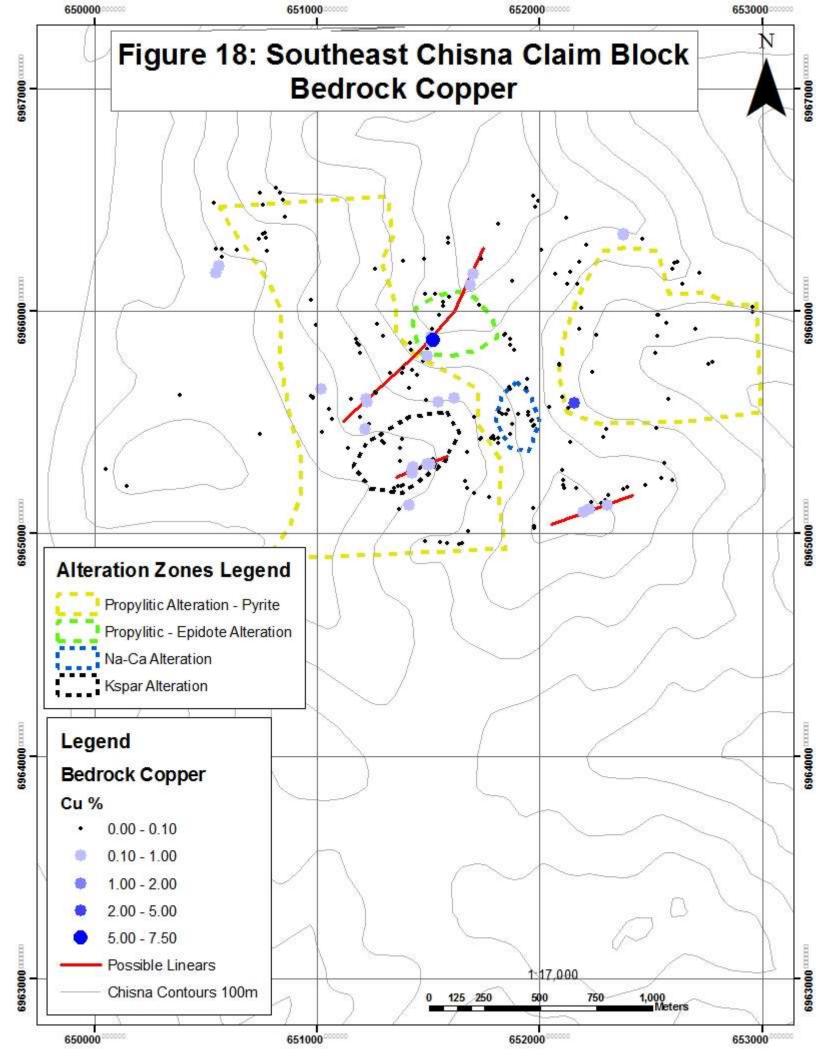






Figure 11: Plagioclase porphyritic andesite with iron oxide stained fracture surfaces and approximately 5% pyrite by volume. "Sample B" collected from immediately west of POW occurrence.

Copper-gold mineralization is focused mainly on the potassic core of the system, in which chalcopyrite lines fractures as well as occurring as disseminated grains in the quartz veinlets. Pyrite : chalcopyrite ratios are approximately 1 : 3. No mention is made of bornite, although at these ratios it is sometimes seen in small amounts in other porphyry deposits. Copper and manganese oxides in the form of malachite and neotocite result from supergene processes. Progressing outward and upward in the potassic zone, the pyrite content increases to about 3% modal volume, and the pyrite: chalcopyrite ratio abruptly changes to 2-5 : 1. This pyrite halo continues outward and upward into the sodic-calcic alteration zone. On the basis of the soil geochemistry, the inner parts of the pyrite halo may contain low-order gold values but little copper. The outer parts of the sodic-calcic zone and the enclosing propylitic zone are essentially sulfide-free, with the exception of hydrothermal breccias, which are cemented by a quartz-chalcopyrite-pyrite-calcite matrix.


In the propylitic zone gold is found with elevated zinc and lead in the form of sphalerite and galena, and appears to be confined to widely spaced veinlets containing crystalline barite. The origin of the magnetite and chlorite in these veinlets is uncertain, as it might be a product of the barite-gold event or of an earlier mineralization stage. Results from the soil survey as shown in figure 15 demonstrate how seven samples showed gold in soil values of greater than 1 g/t. Of these, SE902409 assayed 2.73 g/t gold, 0.56 g/t silver, and 0.01% copper. The highest copper value associated with these seven samples was returned from sample SE902457, which assayed 0.34% Cu, 1.44 g/t gold and 8.37 g/t silver.


Copper assay results from the soil grid are shown in figure 16. The highest copper value was returned for sample SE903930, which assayed 0.584% copper, 0.28 g/t gold, and 8.16 g/t silver.


Gold assay results returned from bedrock samples are shown in figure 17. Six samples returned assays with gold values in excess of 5 g/t. Of these, the best was sample RK802475, which assayed 11.45 g/t gold, 16.53 g/t silver, and 0.365% copper.

Copper assay results from the bedrock samples are shown in figure 18. Of these samples, RK801668 returned the best results at 7.11% copper, 0.78 g/t gold and 79 g/t silver. An examination of the previous figures shows that definite northeast and east-northeast trending linears control the grade distributions in the soil and bedrock samples. Observations from the ITH field crews confirm that the best samples were collected from base metal mineralized quartz veins and other bedrock structures. In the case of the sample with 7.11% copper, the rock was a brecciated, fine grained volcanic with malachite and cuprite coating chalcopyrite lined vugs. These results are not representative of the copper and gold mineralization as a whole. Because these linear trends dominate the data set, the association between porphyry alteration zones and mineralization grades which is visible in outcrop is less well defined in the bedrock geochemical data.

Because of the lack of drilling, little can be said with certainty regarding the vertical extent of mineralization at the Chisna property. The true widths, dips and strike lengths of the known zones of mineralization are not yet known, and cannot be determined based on the available surface geochemical data and ITH's preliminary geological mapping work. Vertical relief is however over 1000 metres, and at this time anomalous base and precious metal values are present in each locale at all of

the exposed elevations. Porphyry systems commonly extend for kilometers vertically, and thus the opportunity to have preserved mineralized portions of these systems can be said to be high.

10.0 Exploration

At this early point in time, no exploration activities have been carried out by Ocean Park Ventures. The last significant work performed on the property was ITH's 2006-2008 exploration program, described in section 6.4 (Recent Exploration) of this report. Results of this program are presented in sections 7.0 to 9.0 of this report.

11.0 Drilling

Three diamond drill holes were drilled into the POW target by Research Associates of Alaska Inc. ("RAA") in 1980. Complete drill logs taken from a 1980 annual work summary report by RAA are presented in Appendix 2. Because of a lack of quality control procedures, downhole directional surveys and verifiable collar locations this information is presented as being historic only, and non-NI 43-101 compliant. The drill is described as a "winkie" drill in the report (i.e. a small, portable core drill). Core diameter is unknown.

DDH-1 was drilled to a depth of 310 feet (94.5 metres) on an azimuth of 90 degrees with a -60 degree dip, collared to the west of the POW structure. This hole encountered multiple fault zones as defined by clay gouge, and both disseminated and quartz-vein hosted sulfide mineralization identified as pyrite and chalcopyrite. Encountered rock types were dacite and andesite breccias. Sulfide contents are reported as being "minor".

DDH-2 was drilled to a depth of 202 feet (61.6 metres), also on an azimuth of -60 degrees, but was collared east of hole DDH-1, closer to the POW structure. This hole encountered abundant quartz veining in a dacite crystal tuff. Abundant pyrite, chalcopyrite and traces of gold are observed in the quartz veins. The mineralized drill intercept was reported as occurring between 16 and 100 feet (4.9 and 30.5 metres), the best results from which returned 3.4% copper, 0.9 oz/t (30.86 g/t) silver and 0.25 oz/t (8.57 g/t) gold over two feet (0.6 metres). The best 68 foot interval (which includes the previous) returned 0.676% copper, 0.306 oz/t (10.49 g/t) silver and 0.0416 oz/t (1.42 g/t) gold.

DDH-3 was terminated prematurely due to adverse drilling conditions at a depth of only 32.3 feet (9.8 metres). This hole encountered magnetite rich diorite dike with epidote veining having much less than 1% pyrite. This hole was collared along strike of the POW structure but the exact location is unclear.

Results of this limited drilling suggest that the host rocks of the POW deposit may have undergone a complicated deformational history. Because of the limited scope and single intercept of the mineralized zone, no useful information can be extracted regarding the mineralized zone's geometry, true width, strike extent or continuity.

12.0 Sample Method and Approach

During the 2006-2008 exploration by ITH, industry-standard rock, soil and silt sampling techniques were used. This is to say that in the case of bedrock and float samples, hand specimen sized rock samples sufficient to provide assayable material for geochemical purposes was gathered. Soil samples were taken from the "C" horizon as close as possible to the soil-bedrock interface. Samples of rock, soil and silt were maintained in sealed, separated sample bags to avoid cross contamination of samples. In the case of silt samples, samples are allowed to drain to as dry a state as possible through permeable sample bags prior to shipping out for assay. In the case of soil samples on the Southeast Chisna claim block were soil samples taken in a rough, 100 metre (north-south) by 200 metre (east-west) spaced grid. With the exception of several parallel sample lines over the POW occurrence (as shown in figure 9B), all other samples were collected randomly with respect to location, in areas where targets of geological interest were located. The rough sample grid in the Southeast Chisna claim block measures approximately 3 kilometres by 1.5 kilometres. Figures 7 to 9B, and 12 to 16 define the locations and gold and copper geochemical assay results of all samples taken by ITH on the Chisna claim blocks.

These results are limited by the nature of the sampling process, and provide sample-specific gold and copper mineralization values that may not be representative of the surrounding rock masses beyond the immediate areas of sampling. These samples are in no way equivalent to results from a continuously sampled trench or drill program, which have not been undertaken on the property. Field crews commonly preferentially sample the most altered and mineralized exposed rocks in an investigated area, and sample results from any grab-sampling program should be considered in this context.

13.0 Sample Preparation, Analysis and Security

All geochemical assays were performed by ALS Chemex out of North Vancouver, British Columbia, a ISO 9001:2000 certified laboratory. All sample preparation and analysis work was conducted by employees of ALS Chemex, and representatives of ITH or its affiliates had no involvement in the analytical process. Sufficient representative material was sequestered from the homogenized soil and silt samples to be accurately analyzed by the laboratory. Rock samples were first subjected to a pulverization process and then similarly sampled from a homogenized pulp.

All multi-element samples were pre-processed with a four-acid digestion method prior to inductively coupled plasma mass spectrometry (ICP-MS) analysis. Gold was analyzed separately using a 50 gram fire assay with an Atomic Absorption (AA) finish. Mercury was also measured separately through cold vapour atomic fluorescence.

Whole-rock (50-element) geochemical data was collected so that research may be conducted on elemental associations between mineralization types, locales and lithologies, and so that the geochemical database might facilitate correlation of local and previously studies deposit types as an exploration and modeling aid to guide future exploration.

Within each sample suite that was submitted to the lab, the first sample was a blank control sample. Every tenth subsequent sample was likewise a control sample alternating between a blank and a standard. Different blanks were used for rock versus silt or soil samples. Rock samples were replaced with a two inch gravel blank, while silts and soils were replaced by pulverized blank material which had undergone a screening process. The use of duplicates was limited due to small sample sizes.

The standards used were multi-element in order to accurately compare results from the assay process. Standards with a range of values were used to better monitor the results.

Returned assay results were monitored on an ongoing basis, all blank, standard and duplicate values were checked against their known values. The author has examined this data and determined it to be accurate and reliable.

Due to the remote location, no specific sample security system was in place during the ITH managed programs, but the author judges that the operators exerted considerable care to maintain the scientific integrity of their data.

14.0 Data Verification

Assay certificates were reviewed by the author and assay results were found to be reasonable for the nature of the copper-gold mineralization which characterizes the Chisna property. No procedural error was apparent in the QA/QC process. The author has not physically observed the original samples, but is satisfied that the sampling procedures were carried out by sufficiently skilled field crews and were not subject to undue contamination. The sample results are consistent with the author's understanding of the Chisna area geology.

The two rock samples taken during the author's site inspection match the lithologies mapped by the ITH field crews for the respective sample locations, and support the geological mapping performed by those crews in those areas, and across the Chisna property generally through validation of their geological mapping techniques.

15.0 Adjacent Properties

The closest bedrock exploration and development is the Delta volcanogenic massive sulfide (VMS) property located northeast of the Northwest Chisna claim block across the Denali Fault. The Delta property is operated by Grayd Resource Corporation of Vancouver, British Columbia. The Delta property is centred at latitude 63° 15' north and longitude 144° 15' west. The Delta property consists of 51 non-contiguous federal and state unpatented lode mining claims totaling 82.5 hectares. These claims do not abut the Chisna claims.

Extensive historical and modern placer gold mining has occurred on all of the Chisna claims. Evidence of camp facilities, heavy equipment, sluices and other devices associated with placer mining were visible, though snow-covered, when the author examined the Northwest Chisna claim block. The author was unable to find reference to a publicly-traded placer mining company which is operating in the area, though historical records of such active public entities were found. It is assumed that private operators based in Fairbanks or Anchorage are responsible for such activities, though these were halted at the time of the author's site visit and contact with these corporations or individuals was not made or sought. Such contact is a definite prerequisite of future exploration activity on the Chisna claims.

16.0 Mineral Processing and Metallurgical Testing

None

17.0 Mineral Resource and Mineral Reserve Estimates

None

18.0 Interpretation and Conclusions

The rock underlying the Chisna claims demonstrates significant gold-rich porphyry copper deposit hosting potential. This mineralization potential is augmented by the presence of gold-bearing structures such as the POW occurrence, and historical data which suggests that significant sources of platinum group elements may be present locally. The Chistochina mining district has produced over 100,000 ounces of gold from placer operations, some of which is speculated to have originated in the bedrock immediately underlying the Tertiary conglomerates which hosted it.

Difficult terrain and a short exploration season have hindered bedrock exploration work in the area. The Chisna claims have never been drill tested, and drilling is the next obvious step towards developing the POW target and exploring the dimensions of the potassic feldspar alteration core of the Southeast Chisna porphyry copper gold target.

Fieldwork by ITH from 2006 to 2008 defined a number of zones of significant gold and copper in bedrock, silt and soil. The lithological mapping and mineralization style modeling by ITH appear to be broadly accurate and consistent with the reviewed data. The current interpretations are limited by a lack of three-dimensionality which can only be remedied through drilling and ground-penetrative geophysics. While the geological mapping and geochemical sampling program undertaken by ITH was

sufficient to broadly define the mineralization styles and geology of the property, more spatially resolved geochemical sampling and geological mapping work should be performed as exploration progresses in order to build a more detailed understanding of the local conditions.

19 Recommendations

Further exploration of the Northwest Chisna property should be focused on further testing of mineralization within the silicified, gold (and copper) rich structure at POW. This should begin with continuous rock chip sampling across the structure on at least five sites across its entire width, and on at least one sampling line along its length, in order to augment the current geochemical sampling suite at this site. Pending timing and access considerations, a trenching program should follow to expand the exposed structural zone laterally and along strike as far as possible. Trenching as needed to follow-up on other positive geochemical results should also be considered, across the Northwest claim block. In addition to the POW target, further geological mapping and geochemical sampling should be done on the silt, soil and bedrock geochemical anomalies which have been discovered on the eastern portions of the Northwest Chisna claim block. Further geological mapping and geochemical sampling should be undertaken during the entire field season by two crews of two persons, in order to continue to characterize the ground as much as possible.

Further exploration of the Southeast Chisna block should focus on further geological mapping of the alteration and lithological facies. Special attention should be placed on attempting to find evidence for the continuation of the potassic feldspar alteration envelope across the valley fill towards the north. Expansion of the soil sampling grid together with increased bedrock sampling (where available) to the full extent of the claim blocks is recommended in the topographic high areas.

Given the lack of historic drill data and the requirement for large-scale expenditure in the first year, it is proposed that a Titan 24 Deep Earth Imaging Survey be executes on both the Northwest and Southeast Chisna claim blocks. This will provide three-dimensional DC-resistivity/IP-chargeability plus Magnetotelluric data and enable fast characterization of future drill targets. At least 10 km² of covered area at each claim block (for a total of approximately 20 km²) is considered necessary for the Titan survey to cover the main targets in the Northwest and Southeast Chisna claim blocks. Because the terrain is mountainous, costs for such geophysical surveying are expected to be higher than normal.

At the POW occurrence, the Titan survey should be followed by diamond drilling on moderate and consistent angles across the structure, focused both on areas yielding the highest gold values during the chip sampling and trenching processes, and those rock volumes containing the most positive geophysical responses on the Titan survey. Drill holes should be maintained on a consistent azimuth and dip based on interpretation of structural orientation derived from field observations and the first drilling. Targeting various depths within the structure should be accomplished through drill movement with maintenance of a consistent azimuth and dip pattern to the drill holes. NQ diameter diamond drill holes are recommended with an average length of 150 metres. At least 3500 metres of diamond drilling is recommended. Holes should be designed to intersect the structure at various depths. Because of the steepness of the terrane at the POW site, all drilling activities will need to be helicopter based.

Equipment will need to be brought on site to construct drill pads, and execute a trenching program. Equipment mobilization should be undertaken during the winter months to take advantage of winter roads and minimize ground disturbance. Equipment procurement from local placer operators should be arranged if possible in order to reduce mobilization fees. Supplies could also be brought into the area by caterpillar train at this time, and stored in advance of a summer drill program. Drill pad construction and drilling could then proceed after the spring melt. An additional 1000 metres of drilling is recommended to follow up on positive geochemical assays elsewhere across the Northwest Claim block.

Because of the remote location, construction of a drill-supporting camp will be required at the Northwest Chisna claims. Since reconnaissance work showed extensive placer-related development in the immediate area, arrangement might be made to lease camp space from a local placer operator, or else an existing camp could be expanded to share facilities with the drill and mapping support team.

Following the Titan survey at the Southeast Chisna claim block, NQ diameter diamond drilling is recommended. In the absence of structural control information (which fieldwork and the geophysics might elucidate), drill holes are initially planned to be vertical, and of 100 to 500 metres depth. At total of at least 5500 metres of drilling is recommended for this claim block, given the large size of the target and its porphyry nature. At least 2000 metres of this drilling should be undertaken on the better mineralized, potassic core of the system identified during field mapping.

Because the village of Slana is less than 10 kilometers from the claims, an effort should be made to assess the summer road access to the property and determine whether construction of an exploration camp is necessary. Similar to the case with the Northwest Chisna claim block, winter mobilization of equipment and supplies in advance of a summer drill program could greatly reduce costs. Ability of the drill and exploration crews to procure lodgings in Slana in the event summer road access is available would also reduce costs related to an exploration camp. Without further information, a helicopter supported exploration and drill camp are proposed with the caveat that cheaper alternative be sought. Over the long term, because of this property's proximal location to Slana and the Alaska Highway, year round road access construction is recommended.

Funding should be transferrable between the Northwest and Southeast projects depending on results, with positive results increasing that project's share of the total pooled budget of approximately \$5,000,000.

This work is considered to best be applied in a two phase program. The first phase will consist of mobilization of materials (e.g. equipment, fuel, camps) onto both claim blocks, plus the Titan survey, trenching and some field work revolving around geological mapping and geochemical sampling. Phase 2, which would primarily comprise diamond drilling, would be contingent upon positive results in phase 1, but would also include additional funds for further fieldwork.

19.1 Proposed Budget

Phase 1

<u>Item</u>

Camp Construction (Materials, supplies and labour, camp mobilization)	\$250,000
Geophysics (Titan Survey)	\$500,000
Trenching and Drill Pad Building	\$150,000
Geological Mapping and Sampling Crew (Includes sample assay costs)	\$100,000
TOTAL	\$1,000,000
<u>Phase 2</u> (Contingent on Positive Results in Phase 1)	
Helicopter-Supported Drill Program 10000 metres at \$350/metre (Includes camp maintenance costs, Helicopter, fuel and wages, mobilization)	\$3,500,000
Geological Mapping and Sampling Crew (Includes sample assay costs)	\$100,000
TOTAL	\$3,600,000
TOTAL FOR BOTH PHASES	\$4,600,000
TOTAL Plus 10% Contingency Amount	\$5,060,000

Funds are transferrable between projects depending on results.

20.0 References

Blakestad, R.A., 1979. <u>POW Ag-Cu-Ag Prospect</u>. Annual summary report, Resource Associates of Alaska Inc.

EDCON-PRJ Inc., 2007. <u>Acquisition and Processing Helicopter Aeromagnetic Survey Chisna SE Project</u>. Internal report to Talongold and ITH Mines. Author unspecified.

Foley, J.Y. and Summers, C.A., 1990. <u>Source and Bedrock Distribution of Gold and Platinum-Group</u> <u>Metals in the Slate Creek Area, Northern Chistochina Mining District, South-Central Alaska</u>. United States Department of the Interior, Bureau of Mines. Report 14-90.

Fugro Geophysical Surveys Inc., 2008. <u>DIGHEM Survey for Talongold (US) LLC</u>. Internal report to Talongold and ITH Mines. Author unspecified.

Gilman, T., Feineman, M. and Fisher, D., 2009. <u>The Chulitna Terrane of South-Central Alaska: A Rifted</u> <u>Volcanic Arc Caught Between the Wrangellia Composite Terrane and the Mesozoic Margin of North</u> <u>America</u>. Geological Society of America Bulletin vol. 21, p. 979-991.

Myers, M., Hunter, E., Myers, R., Wiesneth, D., Wagner, T., Puchner, and C., Streeter, K., 2008. <u>Alaska</u> <u>Reconnaissance 2008 Chisna Block Draft</u>. Unpublished corporate summary report produced for Talon Gold (US) LLC.

Richter, D.H., 1964, in <u>Report for the Year 1964</u>. Alaska Department of Natural Resources, Division of Mines and Minerals. Summary of geological mapping and interpretation results for the Slana District, South-Central Alaska.

Richter, D.H., 1966. <u>Geologic Report Number 21: Geology of the Slana District, South-Central Alaska</u>. Alaska Department of Natural Resources, Division of Mines and Minerals.

Rose, A.W., 1967. <u>Geological Report Number 28: Geology of the Upper Chistochina River Area, Mt.</u> <u>Hayes Quadrangle, Alaska</u>. Alaska Department of Natural Resources, Division of Mines and Minerals.

Schaefer, C.F., and Dashevsky, S.S., 2006. <u>Technical Report and Exploration Recommendations on the</u> Delta VMS Property.

Setter, J.R.D., 1985. <u>A Report on the Gold Potential of the Slate Creek Claim Block, Chistochina Gold</u> <u>District, Alaska</u>. Corporate summary report.

Sillitoe, R.H., 2007. <u>Comments on the Livengood, Chisna and Terra Prospects, Alaska</u>. Unpublished corporate summary report produced for International Tower Hill Mines Ltd.

Taylor, C.N.A., 2010. <u>Technical Report on the Chisna Copper Gold Project, Chistochina Mining District,</u> <u>South-Central Alaska</u>.

Ulrich, T. and Heinrich, C.A., 2001. <u>Geology and Alteration Geochemistry of the Porphyry Cu-Au Deposit</u> <u>at Bajo de la Alumbrera, Argentina</u>. Economic Geology, vol. 96 pp. 1719-1742.

Unknown author, 1978. <u>Powell Gulch Prospect</u>. Annual summary report, Resource Associates of Alaska Inc.

Unknown author, 1980. <u>Powell Prospect</u>. Annual summary report, Resource Associates of Alaska Inc.

Unknown author, 1981. <u>Report on the Central Alaska Range (AKRG) Joint Venture Exploration Program,</u> <u>Zackly, Tsusena Creek and Powell Prospects</u>. Volume 1, Powell Prospect. Annual summary report, Resource Associates of Alaska Inc.

Property names and locations provided in Table 1 are derived from <u>www.mindat.org</u>

21.0 Date and Signature Page

Vancouver, British Columbia, Canada

June 22, 2010

Christopher N.A. Taylor, P.Geo.

Technical Report on the Chisna Copper Gold Property International Tower Hill Mines Ltd., June 2010

22.0 Certificate of Author

As the author of this Technical Report on the Chisna Copper Gold Project, submitted on this 22nd day of June, 2010, I, Chris Taylor, Consulting Geologist, do hereby certify that:

- 1. I am a Professional Geologist with a business address at 5498 Edgewater Dr, Manotick, Ontario, K4M1B4, Canada.
- 2. I graduated with a Bachelor of Science degree in Geology in 2001 and a Master of Science degree in Geology in 2003 from Carleton University.
- 3. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (Reg # 33464).
- 4. I have worked as a geologist since my graduation in 2003. Many of the projects I have been involved with have focused on early stage exploration and project generation, in addition to ore reserve expansion at active mining properties. I have had extensive experience with GIS mapping and modeling of geological considerations since I graduated. I have worked repeatedly in porphyry copper-gold deposits, most of which are located in British Columbia, but I have also examined porphyry projects in Nevada and Arizona. I have also worked repeatedly with epithermal gold deposits in Nevada.
- 5. I have read the definition of qualified person set forth in National Instrument 43-101 (NI 43-101) and certify that by reason of education, affiliation with a professional association as defined in NI 43-101, and past relevant experience work experience, I fulfill the requirements to be a qualified person for the purposes of NI 43-101, and that this Technical Report has been prepared in compliance with the Instrument.
- 6. I am responsible for the contents of this report. I personally visited the Northwest Claim block at Chisna on November 9th, 2009, by helicopter out of Fairbanks, Alaska. After being repelled by inclement weather in the morning, I managed to fly over the Northwest Chisna property for a period of two hours, during which time I disembarked and collected a small number of rock samples.
- I am independent of International Tower Hill Mines Ltd. applying all the tests in section 1.4 of NI 43-101.
- 8. I have previously written a Technical Report on the Chisna property on behalf of Ocean Park Ventures, but had no involvement with the Chisna property prior to the writing of that report.
- 9. I certify that, as of the date of this Certificate, to the best of my knowledge, information, and belief, this Technical Report contains all scientific and technical information required to be disclosed to make the Technical Report accurate and not misleading.
- 10. I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication in the company files on their websites accessible by the public.

Dated this 22nd day of June, 2010. Vancouver, British Columbia, Canada

Christopher N.A. Taylor, P.Geo.

Technical Report on the Chisna Copper Gold Property International Tower Hill Mines Ltd., June 2010

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
1	654529	SLC-1	06/08/06	F020S015E 15 NE NW	16.19
2	654530	SLC-2	06/08/06	F020S015E 15 SE NW	16.19
3	654531	SLC-3	06/08/06	F020S015E 15 NE	64.75
4	654532	SLC-4	06/08/06	F020S015E 14 NW NW	16.19
5	654533	SLC-5	06/08/06	F020S015E 14 NE NW	16.19
6	654534	SLC-6	06/08/06	F020S015E 14 SW NW	16.19
7	654535	SLC-7	06/08/06	F020S015E 14 SE NW	16.19
8	654536	SLC-8	06/08/06	F020S015E 14 NW NE	16.19
9	654537	SLC-9	06/08/06	F020S015E 14 NE NE	16.19
10	654538	SLC-10	06/08/06	F020S015E 14 SW NE	16.19
11	654539	SLC-11	06/08/06	F020S015E 14 SE NE	16.19
12	654540	SLC-12	06/08/06	F020S015E 13 NW	64.75
13	654541	SLC-13	06/08/06	F020S015E 13 NE	64.75
14	654542	SLC-14	06/08/06	F020S016E 18 NW	64.75
15	654543	SLC-15	06/08/06	F020S016E 18 NE	64.75
16	654544	SLC-16	06/08/06	F020S015E 15 NE SW	16.19
17	654545	SLC-17	06/08/06	F020S015E 15 SE SW	16.19
18	654546	SLC-18	06/08/06	F020S015E 15 NW SE	16.19
19	654547	SLC-19	06/08/06	F020S015E 15 NE SE	16.19
20	654548	SLC-20	06/08/06	F020S015E 15 SW SE	16.19
21	654549	SLC-21	06/08/06	F020S015E 15 SE SE	16.19
22	654550	SLC-22	06/08/06	F020S015E 14 NW SW	16.19

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
23	654551	SLC-23	06/08/06	F020S015E 14 NE SW	16.19
24	654552	SLC-24	06/08/06	F020S015E 14 SW SW	16.19
25	654553	SLC-25	06/08/06	F020S015E 14 SE SW	16.19
26	654554	SLC-26	06/08/06	F020S015E 13 NW SW	16.19
27	654555	SLC-27	06/08/06	F020S015E 13 NE SW	16.19
28	654556	SLC-28	06/08/06	F020S015E 13 SW SW	16.19
29	654557	SLC-29	06/08/06	F020S015E 13 SE SW	16.19
30	654558	SLC-30	06/08/06	F020S015E 13 SE	64.75
31	654559	SLC-31	06/08/06	F020S016E 18 SW	64.75
32	654560	SLC-32	06/08/06	F020S016E 18 SE	64.75
33	654561	SLC-33	06/08/06	F020S016E 17 SW	64.75
34	654562	SLC-34	06/08/06	F020S015E 20 NW	64.75
35	654563	SLC-35	06/08/06	F020S015E 20 NE	64.75
36	654564	SLC-36	06/08/06	F020S015E 21 NW NW	16.19
37	654565	SLC-37	06/08/06	F020S015E 21 NE NW	16.19
38	654566	SLC-38	06/08/06	F020S015E 21 SW NW	16.19
39	654567	SLC-39	06/08/06	F020S015E 21 SE NW	16.19
40	654568	SLC-40	06/08/06	F020S015E 21 SE NE	16.19
41	654569	SLC-41	06/08/06	F020S015E 22 SW NW	16.19
42	654570	SLC-42	06/08/06	F020S015E 22 SE NW	16.19
43	654571	SLC-43	06/08/06	F020S015E 22 NW NE	16.19
44	654572	SLC-44	06/08/06	F020S015E 22 NE NE	16.19
45	654573	SLC-45	06/08/06	F020S015E 22 SW NE	16.19
46	654574	SLC-46	06/08/06	F020S015E 23 NW NW	16.19
47	654575	SLC-47	06/08/06	F020S015E 23 NE NW	16.19

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
48	654576	SLC-48	06/08/06	F020S015E 23 SE NW	16.19
49	654577	SLC-49	06/08/06	F020S015E 23 NW NE	16.19
50	654578	SLC-50	06/08/06	F020S015E 23 NE NE	16.19
51	654579	SLC-51	06/08/06	F020S015E 23 SW NE	16.19
52	654580	SLC-52	06/08/06	F020S015E 23 SE NE	16.19
53	654581	SLC-53	06/08/06	F020S015E 24 NW NW	16.19
54	654582	SLC-54	06/08/06	F020S015E 24 NE NW	16.19
55	654583	SLC-55	06/08/06	F020S015E 24 SW NW	16.19
56	654584	SLC-56	06/08/06	F020S015E 24 SE NW	16.19
57	654585	SLC-57	06/08/06	F020S015E 24 NW NE	16.19
58	654586	SLC-58	06/08/06	F020S015E 24 NE NE	16.19
59	654587	SLC-59	06/08/06	F020S015E 24 SW NE	16.19
60	654588	SLC-60	06/08/06	F020S015E 24 SE NE	16.19
61	654589	SLC-61	06/08/06	F020S016E 19 NW	64.75
62	654590	SLC-62	06/08/06	F020S016E 19 NE	64.75
63	654591	SLC-63	06/08/06	F020S016E 20 NW	64.75
64	654592	SLC-64	06/08/06	F020S016E 20 NE	64.75
65	654593	SLC-65	06/08/06	F020S016E 21 NW	64.75
66	654594	SLC-66	06/08/06	F020S016E 21 NE	64.75
67	654595	SLC-67	06/08/06	F020S016E 22 NW	64.75
68	654596	SLC-68	06/08/06	F020S016E 22 NE	64.75
69	654597	SLC-69	06/08/06	F020S015E 20 SW	64.75
70	654598	SLC-70	06/08/06	F020S015E 20 SE	64.75
71	654599	SLC-71	06/08/06	F020S015E 21 SW	64.75
72	654600	SLC-72	06/08/06	F020S015E 21 NW SE	16.19

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
73	654601	SLC-73	06/08/06	F020S015E 21 NE SE	16.19
74	654602	SLC-74	06/08/06	F020S015E 21 SW SE	16.19
75	654603	SLC-75	06/08/06	F020S015E 21 SE SE	16.19
76	654604	SLC-76	06/08/06	F020S015E 22 SW	64.75
77	654605	SLC-77	06/08/06	F020S015E 22 NW SE	16.19
78	654606	SLC-78	06/08/06	F020S015E 22 NE SE	16.19
79	654607	SLC-79	06/08/06	F020S015E 22 SW SE	16.19
80	654608	SLC-80	06/08/06	F020S015E 22 SE SE	16.19
81	654609	SLC-81	06/08/06	F020S015E 23 NW SW	16.19
82	654610	SLC-82	06/08/06	F020S015E 23 SW SW	16.19
83	654611	SLC-83	06/08/06	F020S015E 23 NW SE	16.19
84	654612	SLC-84	06/08/06	F020S015E 23 SW SE	16.19
85	654613	SLC-85	06/08/06	F020S015E 23 SE SE	16.19
86	654614	SLC-86	06/08/06	F020S015E 24 SW SW	16.19
87	654615	SLC-87	06/08/06	F020S015E 24 SE SW	16.19
88	654616	SLC-88	06/08/06	F020S015E 24 NW SE	16.19
89	654617	SLC-89	06/08/06	F020S015E 24 NE SE	16.19
90	654618	SLC-90	06/08/06	F020S015E 24 SW SE	16.19
91	654619	SLC-91	06/08/06	F020S015E 24 SE SE	16.19
92	654620	SLC-92	06/08/06	F020S016E 19 NW SW	16.19
93	654621	SLC-93	06/08/06	F020S016E 19 NE SW	16.19
94	654622	SLC-94	06/08/06	F020S016E 19 SW SW	16.19
95	654623	SLC-95	06/08/06	F020S016E 19 SE SW	16.19
96	654624	SLC-96	06/08/06	F020S016E 19 SE	64.75
97	654625	SLC-97	06/08/06	F020S016E 20 SW	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
98	654626	SLC-98	06/08/06	F020S016E 20 SE	64.75
99	654627	SLC-99	06/08/06	F020S016E 21 SW	64.75
100	654628	SLC-100	06/08/06	F020S016E 21 SE	64.75
101	654629	SLC-101	06/08/06	F020S016E 22 SW	64.75
102	654630	SLC-102	06/08/06	F020S016E 22 SE	64.75
103	654631	SLC-103	06/08/06	F020S015E 29 NW	64.75
104	654632	SLC-104	06/08/06	F020S015E 29 NE	64.75
105	654633	SLC-105	06/08/06	F020S015E 28 NW	64.75
106	654634	SLC-106	06/08/06	F020S015E 28 NE	64.75
107	654635	SLC-107	06/08/06	F020S015E 27 NW	64.75
108	654636	SLC-108	06/08/06	F020S015E 27 NE	64.75
109	654637	SLC-109	06/08/06	F020S015E 26 NW NW	16.19
110	654638	SLC-110	06/08/06	F020S015E 26 NE NW	16.19
111	654639	SLC-111	06/08/06	F020S015E 26 SW NW	16.19
112	654640	SLC-112	06/08/06	F020S015E 26 SE NW	16.19
113	654641	SLC-113	06/08/06	F020S015E 26 NE	64.75
114	654642	SLC-114	06/08/06	F020S015E 25 NW	64.75
115	654643	SLC-115	06/08/06	F020S015E 25 NW NE	16.19
116	654644	SLC-116	06/08/06	F020S015E 25 SW NE	16.19
117	654645	SLC-117	06/08/06	F020S015E 25 SE NE	16.19
118	654646	SLC-118	06/08/06	F020S016E 30 NW NW	16.19
119	654647	SLC-119	06/08/06	F020S016E 30 NE NW	16.19
120	654648	SLC-120	06/08/06	F020S016E 30 SW NW	16.19
121	654649	SLC-121	06/08/06	F020S016E 30 SE NW	16.19
122	654650	SLC-122	06/08/06	F020S016E 30 NW NE	16.19

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
123	654651	SLC-123	06/08/06	F020S016E 30 NE NE	16.19
124	654652	SLC-124	06/08/06	F020S016E 30 SW NE	16.19
125	654653	SLC-125	06/08/06	F020S016E 30 SE NE	16.19
126	654654	SLC-126	06/08/06	F020S016E 29 NW	64.75
127	654655	SLC-127	06/08/06	F020S016E 29 NE	64.75
128	654656	SLC-128	06/08/06	F020S016E 28 NW	64.75
129	654657	SLC-129	06/08/06	F020S016E 28 NE	64.75
130	654658	SLC-130	06/08/06	F020S016E 27 NW	64.75
131	654659	SLC-131	06/08/06	F020S016E 27 NE	64.75
132	654660	SLC-132	06/08/06	F020S015E 29 SW	64.75
133	654661	SLC-133	06/08/06	F020S015E 29 SE	64.75
134	654662	SLC-134	06/08/06	F020S015E 28 SW	64.75
135	654663	SLC-135	06/08/06	F020S015E 28 SE	64.75
136	654664	SLC-136	06/08/06	F020S015E 27 SW	64.75
137	654665	SLC-137	06/08/06	F020S015E 27 SE	64.75
138	654666	SLC-138	06/08/06	F020S015E 26 SW	64.75
139	654667	SLC-139	06/08/06	F020S015E 26 SE	64.75
140	654668	SLC-140	06/08/06	F020S015E 25 SW	64.75
141	654669	SLC-141	06/08/06	F020S015E 25 SE	64.75
142	654670	SLC-142	06/08/06	F020S016E 30 NW SW	16.19
143	654671	SLC-143	06/08/06	F020S016E 30 NE SW	16.19
144	654672	SLC-144	06/08/06	F020S016E 30 SW SW	16.19
145	654673	SLC-145	06/08/06	F020S016E 30 SE SW	16.19
146	654674	SLC-146	06/08/06	F020S016E 30 NW SE	16.19
147	654675	SLC-147	06/08/06	F020S016E 30 NE SE	16.19

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
148	654676	SLC-148	06/08/06	F020S016E 30 SW SE	16.19
149	654677	SLC-149	06/08/06	F020S016E 30 SE SE	16.19
150	654678	SLC-150	06/08/06	F020S016E 29 SW	64.75
151	654679	SLC-151	06/08/06	F020S016E 29 SE	64.75
152	654680	SLC-152	06/08/06	F020S016E 28 SW	64.75
153	654681	SLC-153	06/08/06	F020S016E 28 SE	64.75
154	654682	SLC-154	06/08/06	F020S016E 27 SW	64.75
155	654683	SLC-155	06/08/06	F020S016E 27 SE	64.75
156	654684	SLC-156	06/08/06	F020S015E 32 NW	64.75
157	654685	SLC-157	06/08/06	F020S015E 32 NE	64.75
158	654686	SLC-158	06/08/06	F020S015E 33 NW	64.75
159	654687	SLC-159	06/08/06	F020S015E 33 NE	64.75
160	654688	SLC-160	06/08/06	F020S015E 34 NW	64.75
161	654689	SLC-161	06/08/06	F020S015E 34 NE	64.75
162	654690	SLC-162	06/08/06	F020S015E 35 NW	64.75
163	654691	SLC-163	06/08/06	F020S015E 35 NE	64.75
164	654692	SLC-164	06/08/06	F020S015E 36 NW	64.75
165	654693	SLC-165	06/08/06	F020S015E 36 NW NE	16.19
166	654694	SLC-166	06/08/06	F020S015E 36 NE NE	16.19
167	654695	SLC-167	06/08/06	F020S015E 36 SW NE	16.19
168	654696	SLC-168	06/08/06	F020S015E 36 SE NE	16.19
169	654697	SLC-169	06/08/06	F020S016E 31 NW NW	16.19
170	654698	SLC-170	06/08/06	F020S016E 31 NE NW	16.19
171	654699	SLC-171	06/08/06	F020S016E 31 SW NW	16.19
172	654700	SLC-172	06/08/06	F020S016E 31 SE NW	16.19

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
173	654701	SLC-173	06/08/06	F020S016E 31 NE	64.75
174	654702	SLC-174	06/08/06	F020S016E 32 NW	64.75
175	654703	SLC-175	06/08/06	F020S016E 32 NE	64.75
176	654704	SLC-176	06/08/06	F020S016E 33 NW	64.75
177	654705	SLC-177	06/08/06	F020S016E 33 NE	64.75
178	654706	SLC-178	06/08/06	F020S016E 34 NW	64.75
179	654707	SLC-179	06/08/06	F020S016E 34 NE	64.75
180	654708	SLC-180	06/08/06	F020S015E 32 SW	64.75
181	654709	SLC-181	06/08/06	F020S015E 32 SE	64.75
182	654710	SLC-182	06/08/06	F020S015E 33 SW	64.75
183	654711	SLC-183	06/08/06	F020S015E 33 SE	64.75
184	654712	SLC-184	06/08/06	F020S015E 34 SW	64.75
185	654713	SLC-185	06/08/06	F020S015E 34 SE	64.75
186	654714	SLC-186	06/08/06	F020S015E 35 SW	64.75
187	654715	SLC-187	06/08/06	F020S015E 35 SE	64.75
188	654716	SLC-188	06/08/06	F020S015E 36 SW	64.75
189	654717	SLC-189	06/08/06	F020S015E 36 SE	64.75
190	654718	SLC-190	06/08/06	F020S016E 31 SW	64.75
191	654719	SLC-191	06/08/06	F020S016E 31 SE	64.75
192	654720	SLC-192	06/08/06	F020S016E 32 SW	64.75
193	654721	SLC-193	06/08/06	F020S016E 32 SE	64.75
194	654722	SLC-194	06/08/06	F020S016E 33 SW	64.75
195	654723	SLC-195	06/08/06	F020S016E 33 SE	64.75
196	654724	SLC-196	06/08/06	F020S016E 34 SW	64.75
197	654725	SLC-197	06/08/06	F020S016E 34 SE	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
198	654726	SLC-198	06/08/06	F021S015E 5 NW	64.75
199	654727	SLC-199	06/08/06	F021S015E 5 NE	64.75
200	654728	SLC-200	06/08/06	F021S016E 4 NW	64.75
201	654729	SLC-201	06/08/06	F021S016E 4 NE	64.75
202	654730	SLC-202	06/08/06	F021S016E 3 NW	64.75
203	654731	SLC-203	06/08/06	F021S016E 3 NE	64.75
204	654732	SLC-204	06/08/06	F021S015E 5 SW	64.75
205	654733	SLC-205	06/08/06	F021S015E 5 SE	64.75
206	654734	SLC-206	06/08/06	F021S016E 4 SW	64.75
207	654735	SLC-207	06/08/06	F021S016E 4 SE	64.75
208	654736	SLC-208	06/08/06	F021S016E 3 SW	64.75
209	654737	SLC-209	06/08/06	F021S016E 3 SE	64.75
210	654738	SLC-210	06/08/06	F021S015E 8 NW	64.75
211	654739	SLC-211	06/08/06	F021S015E 8 NE	64.75
212	654740	SLC-212	06/08/06	F021S016E 9 NW	64.75
213	654741	SLC-213	06/08/06	F021S016E 9 NE	64.75
214	654742	SLC-214	06/08/06	F021S016E 10 NW	64.75
215	654743	SLC-215	06/08/06	F021S016E 10 NE	64.75
216	654744	SLC-216	06/08/06	F021S015E 8 SW	64.75
217	654745	SLC-217	06/08/06	F021S015E 8 SE	64.75
218	654746	SLC-218	06/08/06	F021S016E 9 SW	64.75
219	654747	SLC-219	06/08/06	F021S016E 9 SE	64.75
220	654748	SLC-220	06/08/06	F021S016E 10 SW	64.75
221	654749	SLC-221	06/08/06	F021S016E 10 SE	64.75
222	654750	SLC-222	06/08/06	F021S015E 17 NW	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
223	654751	SLC-223	06/08/06	F021S015E 17 NE	64.75
224	654752	SLC-224	06/08/06	F021S016E 16 NW	64.75
225	654753	SLC-225	06/08/06	F021S016E 16 NE	64.75
226	654754	SLC-226	06/08/06	F021S016E 15 NW	64.75
227	654755	SLC-227	06/08/06	F021S016E 15 NE	64.75
228	654756	SLC-228	06/08/06	F021S015E 17 SW	64.75
229	654757	SLC-229	06/08/06	F021S015E 17 SE	64.75
230	654758	SLC-230	06/08/06	F021S016E 16 SW	64.75
231	654759	SLC-231	06/08/06	F021S016E 16 SE	64.75
232	654760	SLC-232	06/08/06	F021S016E 15 SW	64.75
233	654761	SLC-233	06/08/06	F021S016E 15 SE	64.75
234	654762	SLC-234	06/08/06	F021S015E 20 NW	64.75
235	654763	SLC-235	06/08/06	F021S015E 20 NE	64.75
236	654764	SLC-236	06/08/06	F021S015E 21 NW	64.75
237	654765	SLC-237	06/08/06	F021S015E 21 NE	64.75
238	654766	SLC-238	06/08/06	F021S015E 22 NW	64.75
239	654767	SLC-239	06/08/06	F021S015E 22 NE	64.75
240	654768	SLC-240	06/08/06	F021S015E 23 NW	64.75
241	654769	SLC-241	06/08/06	F021S015E 23 NE	64.75
242	654770	SLC-242	06/08/06	F021S015E 24 NW	64.75
243	654771	SLC-243	06/08/06	F021S015E 24 NE	64.75
244	654772	SLC-244	06/08/06	F021S016E 19 NW	64.75
245	654773	SLC-245	06/08/06	F021S016E 19 NE	64.75
246	654774	SLC-246	06/08/06	F021S016E 20 NW	64.75
247	654775	SLC-247	06/08/06	F021S016E 20 NE	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
248	654776	SLC-248	06/08/06	F021S016E 21 NW	64.75
249	654777	SLC-249	06/08/06	F021S016E 21 NE	64.75
250	654778	SLC-250	06/08/06	F021S016E 22 NW	64.75
251	654779	SLC-251	06/08/06	F021S016E 22 NE	64.75
252	654780	SLC-252	06/08/06	F021S015E 20 SW	64.75
253	654781	SLC-253	06/08/06	F021S015E 20 SE	64.75
254	654782	SLC-254	06/08/06	F021S015E 21 SW	64.75
255	654783	SLC-255	06/08/06	F021S015E 21 SE	64.75
256	654784	SLC-256	06/08/06	F021S015E 22 SW	64.75
257	654785	SLC-257	06/08/06	F021S015E 22 SE	64.75
258	654786	SLC-258	06/08/06	F021S015E 23 NW SW	16.19
259	654787	SLC-259	06/08/06	F021S015E 23 NE SW	16.19
260	654788	SLC-260	06/08/06	F021S015E 23 SW SW	16.19
261	654789	SLC-261	06/08/06	F021S015E 23 SE SW	16.19
262	654790	SLC-262	06/08/06	F021S015E 23 NW SE	16.19
263	654791	SLC-263	06/08/06	F021S015E 23 NE SE	16.19
264	654792	SLC-264	06/08/06	F021S015E 23 SE SE	16.19
265	654793	SLC-265	06/08/06	F021S015E 24 NW SW	16.19
266	654794	SLC-266	06/08/06	F021S015E 24 NE SW	16.19
267	654795	SLC-267	06/08/06	F021S015E 24 SE SW	16.19
268	654796	SLC-268	06/08/06	F021S015E 24 SE	64.75
269	654797	SLC-269	06/08/06	F021S016E 19 SW	64.75
270	654798	SLC-270	06/08/06	F021S016E 19 SE	64.75
271	654799	SLC-271	06/08/06	F021S016E 20 SW	64.75
272	654800	SLC-272	06/08/06	F021S016E 20 SE	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
273	654801	SLC-273	06/08/06	F021S016E 21 SW	64.75
274	654802	SLC-274	06/08/06	F021S016E 21 SE	64.75
275	654803	SLC-275	06/08/06	F021S016E 22 SW	64.75
276	654804	SLC-276	06/08/06	F021S016E 22 SE	64.75
277	656571	CC 1	11/02/06	F020S016E35	64.75
278	656572	CC 2	11/02/06	F020S016E35	64.75
279	656573	CC 3	11/02/06	F020S016E35	64.75
280	656574	CC 4	11/02/06	F020S016E35	64.75
281	656575	CC 5	11/02/06	F020S016E36	64.75
282	656576	CC 6	11/02/06	F020S016E36	64.75
283	656577	CC 7	11/02/06	F021S016E02	64.75
284	656578	CC 8	11/02/06	F021S016E02	64.75
285	656579	CC 9	11/02/06	F021S016E01	64.75
286	656580	CC 10	11/02/06	F021S016E01	64.75
287	656581	CC 11	11/02/06	C016N004E36	64.75
288	656582	CC 12	11/02/06	C016N004E36	64.75
289	656583	CC 13	11/02/06	F021S016E02	64.75
290	656584	CC 14	11/02/06	F021S016E02	64.75
291	656585	CC 15	11/02/06	F021S016E01	64.75
292	656586	CC 16	11/02/06	F021S016E01	64.75
293	656587	CC 17	11/02/06	C016N004E36	64.75
294	656588	CC 18	11/02/06	C016N004E36	64.75
295	656589	CC 19	11/02/06	C016N005E31	64.75
296	656590	CC 20	11/02/06	C016N005E31	64.75
297	656591	CC 21	11/02/06	F021S016E12	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
298	656592	CC 22	11/02/06	F021S016E12	64.75
299	656593	CC 23	11/02/06	C015N004E01	64.75
300	656594	CC 24	11/02/06	C015N004E01	64.75
301	656595	CC 25	11/02/06	C015N005E06	64.75
302	656596	CC 26	11/02/06	C015N005E06	64.75
303	656597	CC 27	11/02/06	C015N005E05	64.75
304	656598	CC 28	11/02/06	C015N005E05	64.75
305	656599	CC 29	11/02/06	F021S016E12	64.75
306	656600	CC 30	11/02/06	C015N004E01	64.75
307	656601	CC 31	11/02/06	C015N004E01	64.75
308	656602	CC 32	11/02/06	C015N005E06	64.75
309	656603	CC 33	11/02/06	C015N005E06	64.75
310	656604	CC 34	11/02/06	C015N005E05	64.75
311	656605	CC 35	11/02/06	C015N005E05	64.75
312	656606	CC 36	11/02/06	C015N005E04	64.75
313	656607	CC 37	11/02/06	C015N005E04	64.75
314	656608	CC 38	11/02/06	C015N004E12	64.75
315	656609	CC 39	11/02/06	C015N005E07	64.75
316	656610	CC 40	11/02/06	C015N005E07	64.75
317	656611	CC 41	11/02/06	C015N005E08	64.75
318	656612	CC 42	11/02/06	C015N005E08	64.75
319	656613	CC 43	11/02/06	C015N005E09	64.75
320	656614	CC 44	11/02/06	C015N005E09	64.75
321	656615	CC 45	11/02/06	C015N004E12	64.75
322	656616	CC 46	11/02/06	C015N005E07	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
323	656617	CC 47	11/02/06	C015N005E07	64.75
324	656618	CC 48	11/02/06	C015N005E08	64.75
325	656619	CC 49	11/02/06	C015N005E08	64.75
326	656620	CC 50	11/02/06	C015N005E09	64.75
327	656621	CC 51	11/02/06	C015N005E09	64.75
328	656622	CC 52	11/03/06	C015N005E17	64.75
329	656623	CC 53	11/03/06	C015N005E17	64.75
330	656624	CC 54	11/03/06	C015N005E16	64.75
331	656625	CC 55	11/03/06	C015N005E16	64.75
332	656626	CC 56	11/03/06	C015N005E15	64.75
333	656627	CC 57	11/03/06	C015N005E15	64.75
334	656628	CC 58	11/03/06	C015N005E14	64.75
335	656629	CC 59	11/03/06	C015N005E14	64.75
336	656630	CC 60	11/03/06	C015N005E17	64.75
337	656631	CC 61	11/03/06	C015N005E17	64.75
338	656632	CC 62	11/03/06	C015N005E16	64.75
339	656633	CC 63	11/03/06	C015N005E16	64.75
340	656634	CC 64	11/03/06	C015N005E15	64.75
341	656635	CC 65	11/03/06	C015N005E15	64.75
342	656636	CC 66	11/03/06	C015N005E14	64.75
343	656637	CC 67	11/03/06	C015N005E14	64.75
344	656638	CC 68	11/03/06	C015N005E21	64.75
345	656639	CC 69	11/03/06	C015N005E21	64.75
346	656640	CC 70	11/03/06	C015N005E22	64.75
347	656641	CC 71	11/03/06	C015N005E22	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
348	656642	CC 72	11/03/06	C015N005E23	64.75
349	656643	CC 73	11/03/06	C015N005E23	64.75
350	656644	CC 74	11/03/06	C015N005E21	64.75
351	656645	CC 75	11/03/06	C015N005E21	64.75
352	656646	CC 76	11/03/06	C015N005E22	64.75
353	656647	CC 77	11/03/06	C015N005E22	64.75
354	656648	CC 78	11/03/06	C015N005E23	64.75
355	656649	CC 79	11/03/06	C015N005E23	64.75
356	656650	CC 80	11/03/06	C015N005E27	64.75
357	656651	CC 81	11/03/06	C015N005E27	64.75
358	656652	CC 82	11/03/06	C015N005E26	64.75
359	656653	CC 83	11/03/06	C015N005E26	64.75
360	656654	CC 84	11/03/06	C015N005E27	64.75
361	656655	CC 85	11/03/06	C015N005E27	64.75
362	656656	CC 86	11/03/06	C015N005E26	64.75
363	656657	CC 87	11/03/06	C015N005E26	64.75
364	656658	CC 88	11/03/06	C015N005E34	64.75
365	656659	CC 89	11/03/06	C015N005E34	64.75
366	656660	CC 90	11/03/06	C015N005E35	64.75
367	656661	CC 91	11/03/06	C015N005E35	64.75
368	656662	CC 92	11/03/06	C015N005E34	64.75
369	656663	CC 93	11/03/06	C015N005E34	64.75
370	656664	CC 94	11/03/06	C015N005E35	64.75
371	656665	CC 95	11/03/06	C015N005E35	64.75
372	656511	AC 1	11/04/06	C012N007E04	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
373	656512	AC2	11/04/06	C012N007E04	64.75
374	656513	AC3	11/04/06	C012N007E03	64.75
375	656514	AC4	11/04/06	C012N007E03	64.75
376	656515	AC5	11/04/06	C012N007E02	64.75
377	656516	AC6	11/04/06	C012N007E02	64.75
378	656517	AC7	11/04/06	C012N007E01	64.75
379	656518	AC8	11/04/06	C012N007E01	64.75
380	656519	AC9	11/04/06	C012N007E04	64.75
381	656520	AC10	11/04/06	C012N007E04	64.75
382	656521	AC11	11/04/06	C012N007E03	64.75
383	656522	AC12	11/04/06	C012N007E03	64.75
384	656523	AC13	11/04/06	C012N007E02	64.75
385	656524	AC14	11/04/06	C012N007E02	64.75
386	656525	AC15	11/04/06	C012N007E01	64.75
387	656526	AC16	11/04/06	C012N007E01	64.75
388	656527	AC17	11/04/06	C012N007E09	64.75
389	656528	AC18	11/04/06	C012N007E09	64.75
390	656529	AC19	11/04/06	C012N007E10	64.75
391	656530	AC20	11/04/06	C012N007E10	64.75
392	656531	AC21	11/04/06	C012N007E11	64.75
393	656532	AC22	11/04/06	C012N007E11	16.19
394	656533	AC23	11/04/06	C012N007E11	16.19
395	656534	AC24	11/04/06	C012N007E12	64.75
396	656535	AC25	11/04/06	C012N007E12	64.75
397	656536	AC26	11/04/06	C012N007E09	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
398	656537	AC27	11/04/06	C012N007E09	64.75
399	656538	AC28	11/04/06	C012N007E10	64.75
400	656539	AC29	11/04/06	C012N007E10	64.75
401	656540	AC30	11/04/06	C012N007E11	64.75
402	656541	AC31	11/04/06	C012N007E11	16.19
403	656542	AC32	11/04/06	C012N007E11	16.19
404	656543	AC33	11/04/06	C012N007E11	16.19
405	656544	AC34	11/04/06	C012N007E12	64.75
406	656545	AC35	11/04/06	C012N007E12	16.19
407	656546	AC36	11/04/06	C012N007E12	16.19
408	656547	AC37	11/05/06	C012N007E14	64.75
409	656548	AC38	11/05/06	C012N007E14	64.75
410	656549	AC39	11/05/06	C012N007E13	64.75
411	656550	AC40	11/05/06	C012N007E13	64.75
412	656551	AC41	11/05/06	C012N007E14	64.75
413	656552	AC42	11/05/06	C012N007E14	64.75
414	656553	AC43	11/05/06	C012N007E13	64.75
415	656554	AC44	11/05/06	C012N007E13	64.75
416	656555	AC45	11/05/06	C012N007E23	64.75
417	656556	AC46	11/05/06	C012N007E23	64.75
418	656557	AC47	11/05/06	C012N007E24	64.75
419	656558	AC48	11/05/06	C012N007E24	64.75
420	656559	AC49	11/05/06	C012N007E23	64.75
421	656560	AC50	11/05/06	C012N007E23	64.75
422	656561	AC51	11/05/06	C012N007E24	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
423	656562	AC52	11/05/06	C012N007E24	64.75
424	656563	AC53	11/05/06	C012N007E26	64.75
425	656564	AC54	11/05/06	C012N007E26	64.75
426	656565	AC55	11/05/06	C012N007E25	64.75
427	656566	AC56	11/05/06	C012N007E25	64.75
428	656567	AC 57	11/05/06	C012N007E26	64.75
429	656568	AC 58	11/05/06	C012N007E26	64.75
430	656569	AC 59	11/05/06	C012N007E25	64.75
431	656570	AC 60	11/05/06	C012N007E25	64.75
432	660188	SCW1	06/19/07	F020S014E13	16.19
433	660189	SCW2	06/19/07	F020S014E13	16.19
434	660190	SCW3	06/19/07	F020S014E13	16.19
435	660191	SCW4	06/19/07	F020S014E13	16.19
436	660192	SCW5	06/19/07	F020S014E13	16.19
437	660193	SCW6	06/19/07	F020S014E13	16.19
438	660194	SCW7	06/19/07	F020S015E10	16.19
439	660195	SCW8	06/19/07	F020S015E10	16.19
440	660196	SCW9	06/19/07	F020S015E10	16.19
441	660197	SCW10	06/19/07	F021S015E19	64.75
442	660198	SCW11	06/19/07	F021S015E19	64.75
443	660199	SCW12	06/19/07	F021S015E19	64.75
444	660200	SCW13	06/19/07	F021S015E19	64.75
445	660201	SCW14	06/19/07	F021S015E18	64.75
446	660202	SCW15	06/19/07	F021S015E18	64.75
447	660203	SCW16	06/19/07	F021S015E18	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
448	660204	SCW17	06/19/07	F021S015E18	64.75
449	660205	SCW18	06/19/07	F021S015E07	64.75
450	660206	SCW19	06/19/07	F021S015E07	64.75
451	660207	SCW20	06/19/07	F021S015E07	64.75
452	660208	SCW21	06/19/07	F021S015E07	64.75
453	660209	SCW22	06/19/07	F021S015E06	64.75
454	660210	SCW23	06/19/07	F021S015E06	64.75
455	660211	SCW24	06/19/07	F021S015E06	64.75
456	660212	SCW25	06/19/07	F021S015E06	64.75
457	660213	SCW26	06/19/07	F020S015E31	64.75
458	660214	SCW27	06/19/07	F020S015E31	64.75
459	660215	SCW28	06/19/07	F020S015E31	64.75
460	660216	SCW29	06/19/07	F020S015E31	64.75
461	660217	SCW30	06/19/07	F020S015E30	64.75
462	660218	SCW31	06/19/07	F020S015E30	64.75
463	660219	SCW32	06/19/07	F020S015E30	64.75
464	660220	SCW33	06/19/07	F020S015E30	64.75
465	660221	SCW34	06/19/07	F020S014E24	64.75
466	660222	SCW35	06/19/07	F020S015E19	64.75
467	660223	SCW36	06/19/07	F020S015E19	64.75
468	660224	SCW37	06/19/07	F020S014E24	64.75
469	660225	SCW38	06/19/07	F020S015E19	64.75
470	660226	SCW39	06/19/07	F020S015E19	64.75
471	660227	SCW40	06/19/07	F020S015E18	64.75
472	660228	SCW41	06/19/07	F020S015E18	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
473	660229	SCW42	06/19/07	F020S015E17	64.75
474	660230	SCW43	06/19/07	F020S015E17	64.75
475	660231	SCW44	06/19/07	F020S015E16	64.75
476	660232	SCW45	06/19/07	F020S015E16	64.75
477	660233	SCW46	06/19/07	F020S014E13	64.75
478	660234	SCW47	06/19/07	F020S014E13	64.75
479	660235	SCW48	06/19/07	F020S015E18	64.75
480	660236	SCW49	06/19/07	F020S015E18	64.75
481	660237	SCW50	06/19/07	F020S015E17	64.75
482	660238	SCW51	06/19/07	F020S015E17	64.75
483	660239	SCW52	06/19/07	F020S015E16	64.75
484	660240	SCW53	06/19/07	F020S015E16	64.75
485	660241	SCW54	06/19/07	F020S014E12	64.75
486	660242	SCW55	06/19/07	F020S014E12	64.75
487	660243	SCW56	06/19/07	F020S015E07	64.75
488	660244	SCW57	06/19/07	F020S015E07	64.75
489	660245	SCW58	06/19/07	F020S015E08	64.75
490	660246	SCW59	06/19/07	F020S015E08	64.75
491	660247	SCW60	06/19/07	F020S015E09	64.75
492	660248	SCW61	06/19/07	F020S015E09	64.75
493	660249	SCW62	06/19/07	F020S015E10	64.75
494	660250	SCW63	06/19/07	F020S015E11	64.75
495	660251	SCW64	06/19/07	F020S015E11	64.75
496	660252	SCW65	06/19/07	F020S014E12	64.75
497	660253	SCW66	06/19/07	F020S014E12	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
498	660254	SCW67	06/19/07	F020S015E07	64.75
499	660255	SCW68	06/19/07	F020S015E07	64.75
500	660256	SCW69	06/19/07	F020S015E08	64.75
501	660257	SCW70	06/19/07	F020S015E08	64.75
502	660258	SCW71	06/19/07	F020S015E09	64.75
503	660259	SCW72	06/19/07	F020S015E09	64.75
504	660260	SCW73	06/19/07	F020S015E10	64.75
505	660261	SCW74	06/19/07	F020S015E10	64.75
506	660262	SCW75	06/19/07	F020S015E11	64.75
507	660263	SCW76	06/19/07	F020S015E11	64.75
508	661344	ACS 123	11/02/07	C 11 N8 E6	64.75
509	661345	ACS 124	11/02/07	C 11 N8 E6	64.75
510	661354	ACS 133	11/02/07	C 11 N8 E6	64.75
511	661355	ACS 134	11/02/07	C 11 N8 E6	64.75
512	661362	ACS 141	11/02/07	C 11 N8 E7	64.75
513	661363	ACS 142	11/02/07	C 11 N8 E7	64.75
514	661370	ACS 149	11/02/07	C 11 N8 E7	64.75
515	661371	ACS 150	11/02/07	C 11 N8 E7	64.75
516	661376	ACS 155	11/02/07	C 11 N8 E18	64.75
517	661377	ACS 156	11/02/07	C 11 N8 E18	64.75
518	661378	ACS 157	11/02/07	C 11 N8 E17	64.75
519	661379	ACS 158	11/02/07	C 11 N8 E17	64.75
520	661380	ACS159	09/22/07	C 11 N8 E15	64.75
521	661381	ACS160	09/22/07	C 11 N8 E15	64.75
522	661386	ACS 165	11/02/07	C 11 N8 E18	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
523	661387	ACS 166	11/02/07	C 11 N8 E18	64.75
524	661388	ACS 167	11/02/07	C 11 N8 E17	64.75
525	661389	ACS 168	11/02/07	C 11 N8 E17	64.75
526	661390	ACS169	09/22/07	C 11 N8 E15	64.75
527	661391	ACS170	09/22/07	C 11 N8 E15	64.75
528	661396	ACS175	09/22/07	C 11 N8 E24	64.75
529	661397	ACS176	09/22/07	C 11 N8 E24	64.75
530	664367	ACS 179	06/20/08	C011N008E04	64.75
531	664368	ACS 180	06/20/08	C011N008E04	64.75
532	664369	ACS 181	06/20/08	C011N008E03	16.19
533	664370	ACS 182	06/20/08	C011N008E03	16.19
534	664371	ACS 183	06/20/08	C011N008E03	64.75
535	664374	ACS 186	06/20/08	C011N008E04	64.75
536	664375	ACS 187	06/20/08	C011N008E04	64.75
537	664376	ACS 188	06/20/08	C011N008E03	64.75
538	664377	ACS 189	06/20/08	C011N008E03	16.19
539	664378	ACS 190	06/20/08	C011N008E03	16.19
540	664383	ACS 195	06/20/08	C011N008E10	64.75
541	664384	ACS 196	06/20/08	C011N008E10	64.75
542	664390	ACS 202	06/20/08	C011N008E10	64.75
543	664293	SCS 1	06/20/08	F021S015E04	64.75
544	664294	SCS 2	06/20/08	F021S015E04	64.75
545	664295	SCS 3	06/20/08	F021S015E03	64.75
546	664296	SCS 4	06/20/08	F021S015E03	64.75
547	664297	SCS 5	06/20/08	F021S015E02	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
548	664298	SCS 6	06/20/08	F021S015E02	64.75
549	664299	SCS 7	06/20/08	F021S015E01	64.75
550	664300	SCS 8	06/20/08	F021S015E01	64.75
551	664301	SCS 9	06/20/08	F021S016E06	64.75
552	664302	SCS 10	06/20/08	F021S016E06	64.75
553	664303	SCS 11	06/20/08	F021S016E05	64.75
554	664304	SCS 12	06/20/08	F021S016E05	64.75
555	664305	SCS 13	06/20/08	F021S015E04	64.75
556	664306	SCS 14	06/20/08	F021S015E04	64.75
557	664307	SCS 15	06/20/08	F021S015E03	64.75
558	664308	SCS 16	06/20/08	F021S015E03	64.75
559	664328	SCS 36	06/20/08	F021S016E08	64.75
560	664309	SCS 17	06/20/08	F021S015E02	64.75
561	664329	SCS 37	06/20/08	F021S015E09	64.75
562	664310	SCS 18	06/20/08	F021S015E02	64.75
563	664330	SCS 38	06/20/08	F021S015E09	64.75
564	664311	SCS 19	06/20/08	F021S015E01	64.75
565	664331	SCS 39	06/20/08	F021S015E10	64.75
566	664312	SCS 20	06/20/08	F021S015E01	64.75
567	664332	SCS 40	06/20/08	F021S015E10	64.75
568	664313	SCS 21	06/20/08	F021S016E06	64.75
569	664333	SCS 41	06/20/08	F021S015E11	64.75
570	664314	SCS 22	06/20/08	F021S016E06	64.75
571	664334	SCS 42	06/20/08	F021S015E11	64.75
572	664315	SCS 23	06/20/08	F021S016E05	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
573	664335	SCS 43	06/20/08	F021S015E12	64.75
574	664316	SCS 24	06/20/08	F021S016E05	64.75
575	664336	SCS 44	06/20/08	F021S015E12	64.75
576	664317	SCS 25	06/20/08	F021S015E09	64.75
577	664337	SCS 45	06/20/08	F021S016E07	64.75
578	664318	SCS 26	06/20/08	F021S015E09	64.75
579	664338	SCS 46	06/20/08	F021S016E07	64.75
580	664319	SCS 27	06/20/08	F021S015E10	64.75
581	664339	SCS 47	06/20/08	F021S016E08	64.75
582	664320	SCS 28	06/20/08	F021S015E10	64.75
583	664340	SCS 48	06/20/08	F021S016E08	64.75
584	664321	SCS 29	06/20/08	F021S015E11	64.75
585	664341	SCS 49	06/20/08	F021S015E16	64.75
586	664322	SCS 30	06/20/08	F021S015E11	64.75
587	664342	SCS 50	06/20/08	F021S015E16	64.75
588	664323	SCS 31	06/20/08	F021S015E12	64.75
589	664343	SCS 51	06/20/08	F021S015E15	64.75
590	664324	SCS 32	06/20/08	F021S015E12	64.75
591	664344	SCS 52	06/20/08	F021S015E15	64.75
592	664325	SCS 33	06/20/08	F021S016E07	64.75
593	664345	SCS 53	06/20/08	F021S015E14	64.75
594	664326	SCS 34	06/20/08	F021S016E07	64.75
595	664327	SCS 35	06/20/08	F021S016E08	64.75
596	664346	SCS 54	06/20/08	F021S015E14	64.75
597	664347	SCS 55	06/20/08	F021S015E13	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
598	664348	SCS 56	06/20/08	F021S015E13	64.75
599	664349	SCS 57	06/20/08	F021S016E18	64.75
600	664350	SCS 58	06/20/08	F021S016E18	64.75
601	664351	SCS 59	06/20/08	F021S016E17	64.75
602	664352	SCS 60	06/20/08	F021S016E17	64.75
603	664353	SCS 61	06/20/08	F021S015E16	64.75
604	664354	SCS 62	06/20/08	F021S015E16	64.75
605	664355	SCS 63	06/20/08	F021S015E15	64.75
606	664356	SCS 64	06/20/08	F021S015E15	64.75
607	664357	SCS 65	06/20/08	F021S015E14	64.75
608	664358	SCS 66	06/20/08	F021S015E14	64.75
609	664359	SCS 67	06/20/08	F021S015E13	64.75
610	664360	SCS 68	06/20/08	F021S015E13	64.75
611	664361	SCS 69	06/20/08	F021S016E18	64.75
612	664362	SCS 70	06/20/08	F021S016E18	64.75
613	664363	SCS 71	06/20/08	F021S016E17	64.75
614	664364	SCS 72	06/20/08	F021S016E17	64.75
615	665515	MH 1	12/05/08	F022S014E08	64.75
616	665516	MH 2	12/05/08	F022S014E08	64.75
617	665517	MH 3	12/05/08	F022S014E09	64.75
618	665518	MH 4	12/05/08	F022S014E09	64.75
619	665519	MH 5	12/05/08	F022S014E08	64.75
620	665520	MH 6	12/05/08	F022S014E08	64.75
621	665521	MH 7	12/05/08	F022S014E09	64.75
622	665522	MH 8	12/05/08	F022S014E09	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
623	665523	MH 9	12/05/08	F022S014E17	64.75
624	665524	MH 10	12/05/08	F022S014E17	64.75
625	665525	MH 11	12/05/08	F022S014E16	64.75
626	665526	MH 12	12/05/08	F022S014E16	64.75
627	665527	MH 13	12/05/08	F022S014E17	64.75
628	665528	MH 14	12/05/08	F022S014E17	64.75
629	665529	MH 15	12/05/08	F022S014E16	64.75
630	665530	MH 16	12/05/08	F022S014E16	64.75
631	665531	MH 17	12/05/08	F022S014E20	64.75
632	665532	MH 18	12/05/08	F022S014E20	64.75
633	665533	MH 19	12/05/08	F022S014E21	64.75
634	665534	MH 20	12/05/08	F022S014E21	64.75
635	665535	MH 21	12/05/08	F022S014E20	64.75
636	665536	MH 22	12/05/08	F022S014E20	64.75
637	665537	MH 23	12/05/08	F022S014E21	64.75
638	665538	MH 24	12/05/08	F022S014E21	64.75
639	665539	CCE 1	12/05/08	C015N005E24	64.75
640	665540	CCE 2	12/05/08	C015N005E24	64.75
641	665541	CCE 3	12/05/08	C015N005E24	64.75
642	665542	CCE 4	12/05/08	C015N005E24	64.75
643	665543	CCE 5	12/05/08	C015N005E25	64.75
644	665544	CCE 6	12/05/08	C015N005E25	64.75
645	665545	CCE 7	12/05/08	C015N005E25	64.75
646	665546	CCE 8	12/05/08	C015N005E25	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
647	701001	IC 288	14/04/10	C011N006E13	64.75
648	701000	IC 287	14/04/10	C011N006E13	64.75
649	700988	IC 275	14/04/10	C011N006E13	64.75
650	700763	IC 51	12/04/10	C013N006E32	64.75
651	700766	IC 54	12/04/10	C013N006E33	64.75
652	700778	IC 66	12/04/10	C013N006E33	64.75
653	700777	IC 65	12/04/10	C013N006E33	64.75
654	700765	IC 53	12/04/10	C013N006E33	64.75
655	700768	IC 56	12/04/10	C013N006E34	64.75
656	700780	IC 68	12/04/10	C013N006E34	64.75
657	700779	IC 67	12/04/10	C013N006E34	64.75
658	700767	IC 55	12/04/10	C013N006E34	64.75
659	700770	IC 58	12/04/10	C013N006E35	64.75
660	700782	IC 70	12/04/10	C013N006E35	64.75
661	700781	IC 69	12/04/10	C013N006E35	64.75
662	700769	IC 57	12/04/10	C013N006E35	64.75
663	700772	IC 60	12/04/10	C013N006E36	64.75
664	700784	IC 72	12/04/10	C013N006E36	64.75
665	700783	IC 71	12/04/10	C013N006E36	64.75
666	700771	IC 59	12/04/10	C013N006E36	64.75
667	700796	IC 84	12/04/10	C012N006E01	64.75
668	700808	IC 96	12/04/10	C012N006E01	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
669	700807	IC 95	12/04/10	C012N006E01	64.75
670	700795	IC 83	12/04/10	C012N006E01	64.75
671	700794	IC 82	12/04/10	C012N006E02	64.75
672	700806	IC 94	12/04/10	C012N006E02	64.75
673	700805	IC 93	12/04/10	C012N006E02	64.75
674	700793	IC 81	12/04/10	C012N006E02	64.75
675	700792	IC 80	12/04/10	C012N006E03	64.75
676	700804	IC 92	12/04/10	C012N006E03	64.75
677	700803	IC 91	12/04/10	C012N006E03	64.75
678	700791	IC 79	12/04/10	C012N006E03	64.75
679	700790	IC 78	12/04/10	C012N006E04	64.75
680	700802	IC 90	12/04/10	C012N006E04	64.75
681	700801	IC 89	12/04/10	C012N006E04	64.75
682	700789	IC 77	12/04/10	C012N006E04	64.75
683	700788	IC 76	12/04/10	C012N006E05	64.75
684	700800	IC 88	12/04/10	C012N006E05	64.75
685	700799	IC 87	12/04/10	C012N006E05	64.75
686	700787	IC 75	12/04/10	C012N006E05	64.75
687	700786	IC 74	12/04/10	C012N006E06	64.75
688	700798	IC 86	12/04/10	C012N006E06	64.75
689	700797	IC 85	12/04/10	C012N006E06	64.75
690	700785	IC 73	12/04/10	C012N006E06	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
691	700810	IC 98	12/04/10	C012N006E07	64.75
692	700822	IC 110	12/04/10	C012N006E07	64.75
693	700821	IC 109	12/04/10	C012N006E07	64.75
694	700809	IC 97	12/04/10	C012N006E07	64.75
695	700812	IC 100	12/04/10	C012N006E08	64.75
696	700824	IC 112	12/04/10	C012N006E08	64.75
697	700823	IC 111	12/04/10	C012N006E08	64.75
698	700811	IC 99	12/04/10	C012N006E08	64.75
699	700814	IC 102	12/04/10	C012N006E09	64.75
700	700826	IC 114	12/04/10	C012N006E09	64.75
701	700825	IC 113	12/04/10	C012N006E09	64.75
702	700813	IC 101	12/04/10	C012N006E09	64.75
703	700816	IC 104	12/04/10	C012N006E10	64.75
704	700828	IC 116	12/04/10	C012N006E10	64.75
705	700827	IC 115	12/04/10	C012N006E10	64.75
706	700815	IC 103	12/04/10	C012N006E10	64.75
707	700818	IC 106	12/04/10	C012N006E11	64.75
708	700830	IC 118	12/04/10	C012N006E11	64.75
709	700829	IC 117	12/04/10	C012N006E11	64.75
710	700817	IC 105	12/04/10	C012N006E11	64.75
711	700820	IC 108	12/04/10	C012N006E12	64.75
712	700832	IC 120	12/04/10	C012N006E12	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
713	700831	IC 119	12/04/10	C012N006E12	64.75
714	700819	IC 107	12/04/10	C012N006E12	64.75
715	700844	IC 132	12/04/10	C012N006E13	64.75
716	700856	IC 144	12/04/10	C012N006E13	64.75
717	700855	IC 143	12/04/10	C012N006E13	64.75
718	700843	IC 131	12/04/10	C012N006E13	64.75
719	700842	IC 130	12/04/10	C012N006E14	64.75
720	700854	IC 142	12/04/10	C012N006E14	64.75
721	700853	IC 141	12/04/10	C012N006E14	64.75
722	700841	IC 129	12/04/10	C012N006E14	64.75
723	700840	IC 128	12/04/10	C012N006E15	64.75
724	700852	IC 140	12/04/10	C012N006E15	64.75
725	700851	IC 139	12/04/10	C012N006E15	64.75
726	700839	IC 127	12/04/10	C012N006E15	64.75
727	700838	IC 126	12/04/10	C012N006E16	64.75
728	700850	IC 138	12/04/10	C012N006E16	64.75
729	700849	IC 137	12/04/10	C012N006E16	64.75
730	700837	IC 125	12/04/10	C012N006E16	64.75
731	700836	IC 124	12/04/10	C012N006E17	64.75
732	700848	IC 136	12/04/10	C012N006E17	64.75
733	700847	IC 135	12/04/10	C012N006E17	64.75
734	700835	IC 123	12/04/10	C012N006E17	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
735	700834	IC 122	12/04/10	C012N006E18	64.75
736	700846	IC 134	12/04/10	C012N006E18	64.75
737	700845	IC 133	12/04/10	C012N006E18	64.75
738	700833	IC 121	12/04/10	C012N006E18	64.75
739	700858	IC 146	12/04/10	C012N006E19	64.75
740	700871	IC 158	12/04/10	C012N006E19	64.75
741	700870	IC 157	12/04/10	C012N006E19	64.75
742	700857	IC 145	12/04/10	C012N006E19	64.75
743	700860	IC 148	12/04/10	C012N006E20	64.75
744	700873	IC 160	12/04/10	C012N006E20	64.75
745	700872	IC 159	12/04/10	C012N006E20	64.75
746	700859	IC 147	12/04/10	C012N006E20	64.75
747	700862	IC 150	12/04/10	C012N006E21	64.75
748	700875	IC 162	12/04/10	C012N006E21	64.75
749	700874	IC 161	12/04/10	C012N006E21	64.75
750	700861	IC 149	12/04/10	C012N006E21	64.75
751	700865	IC 152	12/04/10	C012N006E22	64.75
752	700877	IC 164	12/04/10	C012N006E22	64.75
753	700876	IC 163	12/04/10	C012N006E22	64.75
754	700864	IC 151	12/04/10	C012N006E22	64.75
755	700867	IC 154	12/04/10	C012N006E23	64.75
756	700879	IC 166	12/04/10	C012N006E23	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
757	700878	IC 165	12/04/10	C012N006E23	64.75
758	700618	GUNN 6	15/04/10	F020S012E25	64.75
759	700866	IC 153	12/04/10	C012N006E23	64.75
760	700869	IC 156	12/04/10	C012N006E24	64.75
761	700881	IC 168	12/04/10	C012N006E24	64.75
762	700880	IC 167	12/04/10	C012N006E24	64.75
763	700868	IC 155	12/04/10	C012N006E24	64.75
764	700893	IC 180	14/04/10	C012N006E25	64.75
765	700905	IC 192	14/04/10	C012N006E25	64.75
766	700904	IC 191	14/04/10	C012N006E25	64.75
767	700892	IC 179	14/04/10	C012N006E25	64.75
768	700891	IC 178	14/04/10	C012N006E26	64.75
769	700903	IC 190	14/04/10	C012N006E26	64.75
770	700902	IC 189	14/04/10	C012N006E26	64.75
771	700890	IC 177	14/04/10	C012N006E26	64.75
772	700889	IC 176	14/04/10	C012N006E27	64.75
773	700901	IC 188	14/04/10	C012N006E27	64.75
774	700900	IC 187	14/04/10	C012N006E27	64.75
775	700888	IC 175	14/04/10	C012N006E27	64.75
776	700887	IC 174	14/04/10	C012N006E28	64.75
777	700624	GUNN 12	15/04/10	F020S012E25	64.75
778	700623	GUNN 11	15/04/10	F020S012E25	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
779	700617	GUNN 5	15/04/10	F020S012E25	64.75
780	700616	GUNN 4	15/04/10	F020S012E26	64.75
781	700622	GUNN 10	15/04/10	F020S012E26	64.75
782	700621	GUNN 9	15/04/10	F020S012E26	64.75
783	700615	GUNN 3	15/04/10	F020S012E26	64.75
784	700614	GUNN 2	15/04/10	F020S012E27	64.75
785	700620	GUNN 8	15/04/10	F020S012E27	64.75
786	700619	GUNN 7	15/04/10	F020S012E27	64.75
787	700613	GUNN 1	15/04/10	F020S012E27	64.75
788	700626	GUNN 14	15/04/10	F020S012E34	64.75
789	700632	GUNN 20	15/04/10	F020S012E34	64.75
790	700631	GUNN 19	15/04/10	F020S012E34	64.75
791	700625	GUNN 13	15/04/10	F020S012E34	64.75
792	700628	GUNN 16	15/04/10	F020S012E35	64.75
793	700899	IC 186	14/04/10	C012N006E28	64.75
794	700898	IC 185	14/04/10	C012N006E28	64.75
795	700886	IC 173	14/04/10	C012N006E28	64.75
796	700885	IC 172	14/04/10	C012N006E29	64.75
797	700897	IC 184	14/04/10	C012N006E29	64.75
798	700896	IC 183	14/04/10	C012N006E29	64.75
799	700884	IC 171	14/04/10	C012N006E29	64.75
800	700883	IC 170	14/04/10	C012N006E30	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
801	700895	IC 182	14/04/10	C012N006E30	64.75
802	700894	IC 181	14/04/10	C012N006E30	64.75
803	700882	IC 169	14/04/10	C012N006E30	64.75
804	700907	IC 194	14/04/10	C012N006E31	64.75
805	700919	IC 206	14/04/10	C012N006E31	64.75
806	700918	IC 205	14/04/10	C012N006E31	64.75
807	700906	IC 193	14/04/10	C012N006E31	64.75
808	700909	IC 196	14/04/10	C012N006E32	64.75
809	700921	IC 208	14/04/10	C012N006E32	64.75
810	700920	IC 207	14/04/10	C012N006E32	64.75
811	700634	GUNN 22	15/04/10	F020S012E35	64.75
812	700633	GUNN 21	15/04/10	F020S012E35	64.75
813	700626	GUNN 14	15/04/10	F020S012E34	64.75
814	700630	GUNN 18	15/04/10	F020S012E36	64.75
815	700636	GUNN 24	15/04/10	F020S012E36	64.75
816	700635	GUNN 23	15/04/10	F020S012E36	64.75
817	700629	GUNN 17	15/04/10	F020S012E36	64.75
818	700638	GUNN 26	15/04/10	F021S012E03	64.75
819	700908	IC 195	14/04/10	C012N006E32	64.75
820	700911	IC 198	14/04/10	C012N006E33	64.75
821	700923	IC 210	14/04/10	C012N006E33	64.75
822	700922	IC 209	14/04/10	C012N006E33	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
823	700910	IC 197	14/04/10	C012N006E33	64.75
824	700913	IC 200	14/04/10	C012N006E34	64.75
825	700925	IC 212	14/04/10	C012N006E34	64.75
826	700924	IC 211	14/04/10	C012N006E34	64.75
827	700912	IC 199	14/04/10	14/04/10 C012N006E34	
828	700915	IC 202	14/04/10	C012N006E35	64.75
829	700927	IC 214	14/04/10	C012N006E35	64.75
830	700926	IC 213	14/04/10	C012N006E35	64.75
831	700914	IC 201	14/04/10	C012N006E35	64.75
832	700917	IC 204	14/04/10	C012N006E36	64.75
833	700929	IC 216	14/04/10	C012N006E36	64.75
834	700928	IC 215	14/04/10	C012N006E36	64.75
835	700916	IC 203	14/04/10	C012N006E36	64.75
836	700987	IC 274	14/04/10	C011N006E14	64.75
837	700644	GUNN 32	15/04/10	F021S012E03	64.75
838	700643	GUNN 31	15/04/10	F021S012E03	64.75
839	700637	GUNN 25	15/04/10	F021S012E03	64.75
840	700650	GUNN 38	15/04/10	F021S012E11	64.75
841	700654	GUNN 42	15/04/10	F021S012E11	64.75
842	700653	GUNN 41	15/04/10	F021S012E11	64.75
843	700649	GUNN 37	15/04/10	F021S012E11	64.75
844	700652	GUNN 40	15/04/10	F021S012E12	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
845	700656	GUNN 44	15/04/10	F021S012E12	64.75
846	700655	GUNN 43	15/04/10	F021S012E12	64.75
847	700651	GUNN 39	15/04/10	F021S012E12	64.75
848	700999	IC 286	14/04/10	C011N006E14	64.75
849	700998	IC 285	14/04/10	C011N006E14	64.75
850	700986	IC 273	14/04/10	C011N006E14	64.75
851	700985	IC 272	14/04/10	C011N006E15	64.75
852	700997	IC 284	14/04/10	C011N006E15	64.75
853	700996	IC 283	14/04/10	C011N006E15	64.75
854	700984	IC 271	14/04/10	C011N006E15	64.75
855	700983	IC 270	14/04/10	C011N006E16	64.75
856	700995	IC 282	14/04/10	C011N006E16	64.75
857	700994	IC 281	14/04/10	C011N006E16	64.75
858	700982	IC 269	14/04/10	C011N006E16	64.75
859	700981	IC 268	14/04/10	C011N006E17	64.75
860	700993	IC 280	14/04/10	C011N006E17	64.75
861	700992	IC 279	14/04/10	C011N006E17	64.75
862	700980	IC 267	14/04/10	C011N006E17	64.75
863	700979	IC 266	14/04/10	C011N006E18	64.75
864	700991	IC 278	14/04/10	C011N006E18	64.75
865	700990	IC 277	14/04/10	C011N006E18	64.75
866	700642	GUNN 30	15/04/10	F021S012E01	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
867	700648	GUNN 36	15/04/10	F021S012E01	64.75
868	700647	GUNN 35	15/04/10	F021S012E01	64.75
869	700641	GUNN 29	15/04/10	F021S012E01	64.75
870	700640	GUNN 28	15/04/10	F021S012E02	64.75
871	700646	GUNN 34	15/04/10	F021S012E02	64.75
872	700645	GUNN 33	15/04/10	F021S012E02	64.75
873	700639	GUNN 27	15/04/10	F021S012E02	64.75
874	700714	IC 2	12/04/10	C013N006E19	64.75
875	700978	IC 265	14/04/10	C011N006E18	64.75
876	701003	IC 290	14/04/10	C011N006E19	64.75
877	701005	IC 292	14/04/10	C011N006E19	64.75
878	701004	IC 291	14/04/10	C011N006E19	64.75
879	701002	IC 289	14/04/10	C011N006E19	64.75
880	700941	IC 228	14/04/10	C011N006E01	64.75
881	700953	IC 240	14/04/10	C011N006E01	64.75
882	700952	IC 239	14/04/10	C011N006E01	64.75
883	700940	IC 227	14/04/10	C011N006E01	64.75
884	700939	IC 226	14/04/10	C011N006E02	64.75
885	700951	IC 238	14/04/10	C011N006E02	64.75
886	700950	IC 237	14/04/10	C011N006E02	64.75
887	700938	IC 225	14/04/10	C011N006E02	64.75
888	700937	IC 224	14/04/10	C011N006E03	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
889	700949	IC 236	14/04/10	C011N006E03	64.75
890	700948	IC 235	14/04/10	C011N006E03	64.75
891	700936	IC 223	14/04/10	C011N006E03	64.75
892	700935	IC 222	14/04/10	C011N006E04	64.75
893	700726	IC 14	12/04/10	C013N006E19	64.75
894	700725	IC 13	12/04/10	C013N006E19	64.75
895	700713	IC 1	12/04/10	C013N006E19	64.75
896	700716	IC 4	12/04/10	C013N006E20	64.75
897	700728	IC 16	12/04/10	C013N006E20	64.75
898	700727	IC 15	12/04/10	C013N006E20	64.75
899	700715	IC 3	12/04/10	C013N006E20	64.75
900	700718	IC 6	12/04/10	C013N006E21	64.75
901	700730	IC 18	12/04/10	C013N006E21	64.75
902	700729	IC 17	12/04/10	C013N006E21	64.75
903	700717	IC 5	12/04/10	C013N006E21	64.75
904	700720	IC 8	12/04/10	C013N006E22	64.75
905	700732	IC 20	12/04/10	C013N006E22	64.75
906	700731	IC 19	12/04/10	C013N006E22	64.75
907	700719	IC 7	12/04/10	C013N006E22	64.75
908	700722	IC 10	12/04/10	C013N006E23	64.75
909	700734	IC 22	12/04/10	C013N006E23	64.75
910	700733	IC 21	12/04/10	C013N006E23	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
911	700947	IC 234	14/04/10	C011N006E04	64.75
912	700946	IC 233	14/04/10	C011N006E04	64.75
913	700934	IC 221	14/04/10	C011N006E04	64.75
914	700933	IC 220	14/04/10	C011N006E05	64.75
915	700945	IC 232	14/04/10	C011N006E05	64.75
916	700944	IC 231	14/04/10	C011N006E05	64.75
917	700932	IC 219	14/04/10	C011N006E05	64.75
918	700931	IC 218	14/04/10	C011N006E06	64.75
919	700943	IC 230	14/04/10	C011N006E06	64.75
920	700942	IC 229	14/04/10	C011N006E06	64.75
921	700930	IC 217	14/04/10	C011N006E06	64.75
922	700955	IC 242	14/04/10	C011N006E07	64.75
923	700967	IC 254	14/04/10	C011N006E07	64.75
924	700966	IC 253	14/04/10	C011N006E07	64.75
925	700954	IC 241	14/04/10	C011N006E07	64.75
926	700957	IC 244	14/04/10	C011N006E08	64.75
927	700969	IC 256	14/04/10	C011N006E08	64.75
928	700968	IC 255	14/04/10	C011N006E08	64.75
929	700721	IC 9	12/04/10	C013N006E23	64.75
930	700724	IC 12	12/04/10	C013N006E24	64.75
931	700736	IC 24	12/04/10	C013N006E24	64.75
932	700735	IC 23	12/04/10	C013N006E24	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
933	700723	IC 11	12/04/10	C013N006E24	64.75
934	700748	IC 36	12/04/10	C013N006E25	64.75
935	700760	IC 48	12/04/10	C013N006E25	64.75
936	700759	IC 47	12/04/10	C013N006E25	64.75
937	700747	IC 35	12/04/10	C013N006E25	64.75
938	700746	IC 34	12/04/10	C013N006E26	64.75
939	700758	IC 46	12/04/10	C013N006E26	64.75
940	700757	IC 45	12/04/10	C013N006E26	64.75
941	700745	IC 33	12/04/10	C013N006E26	64.75
942	700744	IC 32	12/04/10	C013N006E27	64.75
943	700756	IC 44	12/04/10	C013N006E27	64.75
944	700755	IC 43	12/04/10	C013N006E27	64.75
945	700743	IC 31	12/04/10	C013N006E27	64.75
946	700742	IC 30	12/04/10	C013N006E28	64.75
947	700956	IC 243	14/04/10	C011N006E08	64.75
948	700959	IC 246	14/04/10	C011N006E09	64.75
949	700971	IC 258	14/04/10	C011N006E09	64.75
950	700970	IC 257	14/04/10	C011N006E09	64.75
951	700958	IC 245	14/04/10	C011N006E09	64.75
952	700961	IC 248	14/04/10	C011N006E10	64.75
953	700973	IC 260	14/04/10	C011N006E10	64.75
954	700972	IC 259	14/04/10	C011N006E10	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
955	700960	IC 247	14/04/10	C011N006E10	64.75
956	700963	IC 250	14/04/10	C011N006E11	64.75
957	700975	IC 262	14/04/10	C011N006E11	64.75
958	700974	IC 261	14/04/10	C011N006E11	64.75
959	700962	IC 249	14/04/10	C011N006E11	64.75
960	700965	IC 252	14/04/10	C011N006E12	64.75
961	700977	IC 264	14/04/10	C011N006E12	64.75
962	700976	IC 263	14/04/10	C011N006E12	64.75
963	700964	IC 251	14/04/10	C011N006E12	64.75
964	700989	IC 276	14/04/10	C011N006E13	64.75
965	700754	IC 42	12/04/10	C013N006E28	64.75
966	700753	IC 41	12/04/10	C013N006E28	64.75
967	700741	IC 29	12/04/10	C013N006E28	64.75
968	700740	IC 28	12/04/10	C013N006E29	64.75
969	700752	IC 40	12/04/10	C013N006E29	64.75
970	700751	IC 39	12/04/10	C013N006E29	64.75
971	700739	IC 27	12/04/10	C013N006E29	64.75
972	700738	IC 26	12/04/10	C013N006E30	64.75
973			12/04/10	C013N006E30	64.75
974	700749	IC 37	12/04/10	C013N006E30	64.75
975	700737	IC 25	12/04/10	C013N006E30	64.75
976	700762	IC 50	12/04/10	C013N006E31	64.75

Count	File Number	Parcel Name	Date Acquired	MTRS Location	Hectares
977	700774	IC 62	12/04/10	C013N006E31	64.75
978	700773	IC 61	12/04/10	C013N006E31	64.75
979	700761	IC 49	12/04/10	C013N006E31	64.75
980	700764	IC 52	12/04/10	C013N006E32	64.75
981	700776	IC 64	12/04/10	C013N006E32	64.75
982	700775	IC 63	12/04/10	C013N006E32	64.75

1980

APPENDIX 2: 1980 Drill Logs from Resource Associates of Alaska Inc.

APPENDIX A

DRILL LOG DATA

DDH-1, DDH-2, DDH-3

POWELL PROSPECT

RESOURCE ASSOCIATES OF ALASKA, INC.

GEOLOGIC LOG SUMMARY

DDH-1 (0-310.8 feet)

DDH-1 intersected a dacite breccia at 14 feet. This breccia contains clasts of dacite, rhyodacite, and andesite in a dacite matrix. Many clasts have subrounded edges, and most are 3 cm. or less in size although some range up to 6 cm.

Pyrite occurs in the dacite matrix, in clast fragments, and along hair-line fractures. The pyrite content ranges up to 4%. Much of the rock is fractured with coatings of yellow earthy limonite, gypsum, and clay minerals.

A fault zone was intersected from 45 to 53 feet which contained fault breccia and clay gouge. Numerous smaller zones of fault gouge are found throughout the hole.

Quartz veinlets are common throughout the hole and they often contain pyrite. Two chalcopyrite-bearing zones were encountered. The first at 147-151 feet and the second at 192.5-194.5 feet. Chalcopyrite is associated with quartz veining. Pyrite with dark black chlorite was observed in more intensely altered portions of the vein system.

At 126 feet, a contact between the dacite breccia and an andesite breccia occurs. This appears to be a lithologic contact. The andesite breccia contains up to 10 percent feldspar phenocrysts which are commonly saussuritized. Dark ferromagnesian minerals appear as elongate crystals and irregular masses.

Pyrite is present in veinlets in the andesite often associated with jasper, epidote, and/or quartz. These veinlets also commonly contain minor amounts of chalcopyrite.

Near the end of the hole at 304 feet, another fault zone was encountered which contains gouge and broken rock along with fragments of a quartz vein containing about 3% pyrite and chalcopyrite. The hole ended at a depth of 310.8 feet.

DDH-2 (0-202 feet)

DDH-2 encountered bedrock at a depth of seven feet. A greenishgray lithoclastic dacite crystal tuff was the predominant rock unit in this hole. Clasts in the tuff are gray subrounded rock fragments with plagioclase and hornblende crystals, and crystal fragments in a finegrained green-gray matrix.

Quartz veining is prevalent. Veins and replacement quartz carry considerable pyrite and often chalcopyrite and traces of gold. Occasional jasper veinlets are found, but the abundance of jasper veinlets in DDH-2 is much less than in the andesite breccia of DDH-1.

-50-

RESOURCE ASSOCIATES OF ALASKA, INC.

Argillic alteration is found above 111.6 feet, at which point an extensive fault zone with much gouge and broken rock was encountered. Below this fault zone, at 170.8 feet, the lithoclastic dacite crystal tuff continues but is largely unaltered. The tuff does contain occasional jasper and quartz-epidote veinlets. DDH-2 was drilled to a depth of 202 feet.

DDH-3 (0-32.3 feet)

DDH-3, spotted along strike of the discovery vein, encountered bedrock at a depth of 10.5 feet which was magnetite-bearing diorite. The diorite is medium-grained, dark grey, and contains less than 0.5% finely disseminated pyrite. The diorite is highly fragmented with some iron staining along fractures.

The hole was abandoned at 32.3 feet by the drill crew because of snow, wind, and drilling problems before the projected vein and altered zone could be reached.

-51-

RESOURCE ASSOCIATES OF ALASKA INC.

No. 1	<u>0F_6</u>	Au P PM								
Haa	- 44	Zn % A9								
ממ.00		Pb %								
HOLE	T/Z	ICK Cu %								
	CORE S	SAMPLETHICK								012621
	DRILL_ B. کمنده	2A	· · · · · · · · · · · · · · · · · · ·	1			E e r F	- T -1-1-1-1	<u> </u>	
	310	NOI			*~ < 11 * ° · · · ·	2 	EJ Grif Low Earth GNU Ghey			Server
	DEPTH.	MINERALIZATION			4 L 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	e C e	GRACTURES VILTAGRACION 9 PEVNI) OND			A DE FOULT OF BEADER DA PROFESTER DA MARST FREDES MARS OND CHAR ER. OND CHAR ER. OND CHAR ER. OND CHAR ER. OND CHAR
RECORD	-collar El Total DE D BY	INERA			E L L L L L L L L L L L L L L L L L L L					A PLE OF A PLE DI A PLE
	LOGGED E	2				25, 25,	Rock Kanife Mineraki		Ð	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DRILL		NIW			2 2 20097 40 22775246 27	2 C F F	3 2 2 C			2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	5 8	GRAPHIC GEOLOGY STRUCT MIN		ي برجيم ب إ			• • • • • • • •	++++		
	- T - <u>2 o 5 - R - I</u> INCLINATION ED <u>8 - II -</u>	GR	V.A.	10				$\left\{ \right\}$		
		T	۲		A A A A A A A A A A A A A A A A A A A					
NC	QUAD <u>Mr Hayra 2</u> T. EARING <u>V 90 E</u> INC 5- 80 COMPLETED.	CORE ANGLE	er Ridge env Arr er Arb seik.						e hoy	
ALASKA, INC.	WI C	P C	7		Cortervive Cher Many Cher Many Cher Mary Cher Mer Serifi S	5			0 = 1 0	
LASK	-QUAD. EARIN(~ 4)		Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	C N P C		9 ° C F	d	ר) בי ר
OF A	00	DETAIL	Press Press		Muccia cortaini Marain Marin E 9 51 x 10 x 1 Unit outerpts Unit outerpts Te breccia to 15 Te breccia built		6 19 1	chay	C	2 20 5
	STARTED	{	14 ANG ULAR acite breccias Lightly In		Acité breccia Dacité Areccia rouruer Ratari rouruer E ges o 6 em. Unit o 6 em. Unit n Anorsite breco anna grounomai	Greepspan	م م د الرد د الرد بر م		× 1	a 55 3 5 0 8 6 6 6
ASSOCIATES	ไม่	ГІТНОГОСУ	103		2244400	2 '- '-	3 6.3	6-INCLES	<u>ل</u> د	-
ASS	<u>Ромієн</u> ь) <u>9862 Е.</u> DAT		2 S T.		A C C C C C C C C C C C C C C C C C C C	21.1- 30.	33.3	4 2 (45'-53' •'9E'	53'- 5 F
JRCE	O-ORD	>	2 U		12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	い <u>、</u>	n 5	4	4	
RESOURCE	PROPERTY <u>Powieh</u> GRID CO-ORD <u>-9662 E</u> , DAT SCALE 1' = 10'	DEPTH REC'V	0	0	30	<i>m</i>		<u>م</u>		

89.5'-90' Freetunko 90-9015 6'NICHEL FOULT 90095 93'-95.8 FREETUNKO FOCH. 101' A'INCHEL FOULT 90-95 102'-103' FREETUNKO 90-95
clurka roc

No. u du u	-ҮРЕ	Pb % Zn % 02/T 02/T		· · · · · · · · · · · · · · · · · · ·			. 196 6.003	Wdd Wdd			
HOLE NO.	DRILL MODEL/TYPE	SAMPLE THICK Cu %	2 4 4 7 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	кк 7:007. 5 с к 7:007. 6 с т к к 7 6 с т к к 7 6 с т к к 7 7 с г к к 7 7 с г к к 7 7 с г к к 7 7 с к к 7 с к к 7 7 с к к 7 с к к 7 7 с к к 7 с к 7 с к к 7 с к к 7 с	Te - X	10 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	× 24 × 24 × 14 ×	6 6 6 7 1 2 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	د می م ه آ	
DRILL RECORD	36 COLLAR ELEV TOTAL DEPTH OGGED BY WA Hev	MINERALIZATION	122 Pyrife Quarta MAR Thish 124 OPEN Jugg VEIN	y ALLE RALS P	VERTHERS OF TANK THE CONTACT SE THE CONTACT SE THE CONTACT SE TOTAL	137.5-138.5 pyni grovn Mais as werl akng Fraetures 1 in Hiterrah	Sakple (79213 Quanta With Chalapyrite Formin Annis Acan Octavia	TAVELA'S FRAER NAFER NTOWAR A ANO BUNNT POLIS A FARETORES POLIS MA WORK NEEKS A CAR SAREES	RE 179217 (1 P A NORESTE A SOLID A CONT A SOLID TO CONT TO CONT TO CONT TO CONT	F TACLUARS	
Δ	R 156	GRAPHIC GEOLOGY ISTRUCT MIN			2°		the the the			Der Contraction	
ALASKA, INC.	LT. Heyes AZ N 90 E COMPLET	CORE	Decits brectia and 126'C orfact interver on stained but appear rather than a paukt	CONTONS UP TO	12						WITH CHAY MINERAKS
ASSOCIATES OF ALI	E STARTED 8-5	LITHOLOGY DETAIL	CT between	A ROESIE DAECCA CONTE FELDSPAR DEPENDENTE VIACK 2 * X IN N. FELDSPANS IN N. FELDSPANS CON CITINES CONDENTE DY EDIDOTE DONA ANNEN COPENDATE NYSTERS CONE MOY DE DEVIDITES	134,5'- 145.5' FracTured						175.5 Fractured iona nongauese orer.
RESOURCE	PROPERTY POWEAL GRID CO-ORD 386 DAT SCALE 1" = 10'	DEPTH REC'V	LIZO Conta Antersife 15 broid Contaction				150		991		

RESOURCE	JRCE ASSOCIATES OF	· ALASKA, INC.	DRILL RECORD	HOLE NO. DDH 41
PROPERTY_	RTY POWELL	T. HAYES AZ. T.	205 R.15E S.36 COLLAR ELEV. DRILL	MODEL/TYPE
GRID C(GRID CO-ORD_ <u>9862F 10000 N</u> DATE STARTED_	BEARING N 906 INCI 8-5-80 COMPLETED	INCLINATION 60° TOTAL DEPTH 310.8 CO ED 8-11-80 LOGGED BY Win Hevey Smith	CORE SIZE D W- 44
SCALE	" = 10'			SHEET 4 OF 6
DEPTH REC'V	LITHOLOGY		GRAPHIC MINERALIZATION SAMPLETHICK	HICK Cu % Pb % Zn % A0 Au
0 0 0 0	, 140° b 1°		OFFICE OFFICE	<u>м</u>
	1994.6' Browska Foult C	gouge Anderite breccia rea Briches with	Very Acts of Pynik and Pynik and Con Very Acts in Anorsite Drecia R I'yrinae unith eunity eunit	2.6' 950 0.1 4.1
	S To 200.5 C to	Epidere - eventar calcure -	thickness	
			•17621	jo,
012	210-217 broken NOCK	Xí u		200
	218' to 221 Fractaries surfaces	zore with chose a	PARTIE CONFINED TO ENCLOSED CLOIL LIG CONFINED TO ENCLOSED VEINLETS PARTIE 200 ID JUSPER	
- 130	230' 4. INCRES Choy	۲ د ع بر	Py with pyrife avants, Cacos veriated	
340	238' I FOOT Crubheb r	କ୍ଷା ସୁବଦ୍ୟ ଅନ୍ୟ	PY PY ITE CONTENT OF CONE VORT 3 40 IN 1 FOOT 5 EG WENTENTS CONTENT OF TOP	

HOLE NO. D P H # I	MODEL/TYPE WILMLALE	SAMPLE THICK Cu % Pb % Zn % C49 Au 5 b		10' 200 0.1 2.1	, e	17D 0.2 4.1 4.6	
DRILL RECORD	<u>کوچ R بخت S 3 ف C</u> OLLAR ELEV DRILL CLINATION <u>60°</u> TOTAL DEPTH <u>3.10.8</u> <u>B-11-B0</u> LOGGED BY <u>سام، Hevey Sauth</u>	GRAPHIC MINERALIZATION SAMPLE	PY A CAN QUANTY, PARTE VENNART WITH JOLPEN AMD TON OSIDES ON FRACTURES. NO DISYEMINATED PYNTE IN ANDESITC BRECCID NE OR VEIN.	Py		Chi Chake Pyrite Dorh he Ry Chake Pyrite Dorh he Ry Zer Suort, spider and chake len Xien with p and chake len Xien with p Suctific miniscol And in len arms for	PARTY PARTY CARCEPYNIE OF ONLY REPORTE VERSAM QUENTS CHER WITH BENE PYNIE CAUSTALL WITH BENE PYNIE CAUSTALL WITH BENE PYNIE CAUSTALL REPORTE VERTHER IN A UNALINE FOR TUNEST CARLEDPINE FOR TUNEST CONE MUCH NESS THAN PC CONE MUCH NESS THAN PC CONE MUCH NESS THAN PC 29, 287-200 OILSEMINIATE B PYNIE IN CONE O.590 2194.5 TENTIAN CONE D.590 2194.5 TENTIAN CONE
RESOURCE ASSOCIATES OF ALASKA, INC.	RTY POWERI QUADMITHAYER A 2)-ORD 9862 E 1000 N 20 E COMPLETE D 8-5-80 COMPLETE	REC'V LITHOLOGY DETAIL CORE	291-285' Angilhicky akteness 291'To 295' Bork Pixk and gneen Fikbspons in akteneuzone 293' To 246' browen zone	260.3'-262' Acriculating EpiDote VEINHETS Fron ITo ZMM WITH VENY PINE GRAINED PYNITE.	263-263.3 broken rock 263.3 269 Triangular bleb of Jospeh and Wite Mildy Quortz With Epidote. 26.8 - 268 Fractureld rock	275.6 - 2 inches chay gouge.	285.5-287 pervasively EpiDoFizED CONF WITA FEUL VILLAY BUONTRUVEINLETS. 390' Fractures rock 293' 9-INCLES POULT gouge OND CNUCHED NOCH.
RES	PROPE GRID CC SCALE	DEPTH	8 7 7	260	348	180	300

	7		
H H	- 44		1. 2
DD	D W	Zn % 02/4	
NO.	YPEESHEET	Pb % Z	
HOLE	SIZE	Cu %	240
<u></u>	MODEL/TYPE .CORE SIZESHE	SAMPLETHICK	
	DRILL S mit h	SAMP	······································
	0		8 8 8 8 8 8 8 8 8 8 8 8 8 8
		MINERALIZATION	
0	- i i i i i i i i i i i i i i i i i i i	RALIZ	
RECORD	COLLAR TOTAL (BY	MINE	
	GGEI		
DRILL		MIN	
	- R 15 E	GRAPHIC Dev Istruct	
		GRAPHIC GEOLOGY ISTRUCTIMIN	Eno of Hotel
		T	
INC.	QUAD <u>MI Hayes A.A.</u> T. EARING <u>N 90 E IN</u> 5- 80 COMPLETED	CORE	F gouge and broken very for hops Very for Dominanty office Nith Prife.
	н	ANC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ALASKA,	QUAD_M BEARING_		
	QUAL BEARIN B - 5 - 80	DETAIL	
S OF	RTED_		One Foor Fock gouge Fault gouge and broi er autragouge and broi er autragouges for some charter brecia Jose Enwares pyrife.
IATE	MELL BEZE 19200N DATE STARTED	LITHOLOGY	
ASSOCIATES	POWERL .9862E DATE		304 - 306 306 - 306 201 - 306 201 - 306 201 - 306 306 -
	RD -9		304 - 305 304 - 305 201 - 305 201 - 305 201 - 30 201 - 30
RESOURCE	PROPERTY <u>POWEAL</u> GRID CO-ORD <u>9862E 19200 N</u> DATE START SCALE <u>1" = 10</u>	REC'V	
RES	PROPEF GRID CO SCALE	DEPTH	

RES	RESOURCE	RCE ASSOCIATES OF ALASKA, INC.	Ø	DRILL RECORD	HOLE NO. D.D.H-2
PRO GRID	PROPERTY_	POWELL QUAD MIT Hayes A6 9 9940E 10000 BEARING N 90°E DATE STARTED 8-11-80 COMPLET	R 15E	<u>عد Collar Elev</u> DF TOTAL DEPTH <u>202'</u> DGGED BY <u>الما المعدي S</u>	DRILL MODEL/TYPE WINKIE CORE SIZE DW-44
DEPTH REC'V	REC'V	LITHOLOGY DETAIL CORE	GRAPHIC GEOLOGY ISTRUCTIMIN	MINERALIZATION	
0		0'-7' Anguhad Talus and red seih	A T L	This hoke is 60° Frim The Espessos sinceres py nite energy nite piscovery our energy reserved	
<u>e</u>	12	Greenish gray kithochastic Uacite Crycfal Tuffi Chaif ort gray subservation nech frognients of chability autoraging I MM in Diametra with phagictoit and honibhand Contreta with phagictoit and nechteria Fine grained green-gray in attic The upper	1400 (A. 100 (RUDAL PUTTED	
1		Part'orthe Hole 10-175 prpears to be and thicky atreated. Fresh decite Turis 15 on by Found below that Depth.	Lin I Strank Lin	Icabke With INTENTAL of barren roch seperativa areas of INTERSE VEINUA: Nancontre veinher	1425 2. 2300 10.5 ~.1 14.2
19		As seener the core No beduing 18 ap. Deprending the source of the source of the source of the second	~~~ °.		1414 2' 670 0.3' 41 8
		SINGRE ESPROSIVE OUTBURGT WITH GITTLE TIME FOR SUBERQUERT MESORTING A SMALLIG INTERVER FOLDETING ALL	x ++	THERE ONE MONUTON	1 2 1 2 1 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2
		TUFU. The De LT KLE TE appenent Hy CONTEINJ		B' CM Josp	2' 1020 1.0 2.1
8		Constituent mineral, but may carry up To 3% pynite rik an Ukika.		SEAL Brown himpaite gyphum.	π^{40} 2' 130 1.0 4.1 15 π^{40} 2' 1500 4.2 4.2 4.1 155
				To res. 7-	1 2 1400 5.6 4.1 390 1005 1, 840 0.7 4.1 79
		3 C- 37' brower	XVXV	39.8' JOM. QUENTE PYFITE VEINHER	2, 430
° •		39.6; 3-14. Chay gouge	a - OTARest	Outers unturbert Telless with	(1980 2' 1300 2.4 2.1 29
- <u>-</u>		42.2-93,7' browen	ALCON CONTRACTOR	pyrite and chalcopyrite. Feul Inna Quartz Veinhers With overte.	2. 8000
1		Sampling begun in Mone intensky ministrates Portioner Ache: 15 good values and refurned 17-92' interval shouto be sampled.	6	dvanta verns with heir 1 196 subsidies pynte epgli FENN QUENTA URINI HETS	1.4 2. 1600 9.7 2.4 300
٥ ۲			500	FEN QUENTE VICIALETE GRO	x ¹⁰ 2' 730 1.2 4.1 6 x ¹⁰ 2' 2' 1.7 4' 7
			X	2 ANN JOINER VENTRIK (51) 52 MUCH QUARTA VENNING OROUPTS JOPPINIE IN 20M	2' 34ppp 32.5 7.7 3 2' 113n0 15.4 4.4 7
C 4				59 Quarte VEINS UP TO 10% Pyrite Diitenivatao info Vahli. Pyses Yeinator	2' 19,000 30.6 5.0 2' 850 0.9 4.1

RESC	RESOURCE	ASSOCIATES OF ALASKA, INC.	DRILL RECORD	HOLE NO. D. D. H- 2	
PROP GRID	PROPERTY_ D GRID CO-ORD_	OUADIMIHOUSE AZ 9940E 10000 N BEARING (V 90'E	R الالمالية		
SCALE	n	DATE STARTED 8 - 11 - 80 COMPLETED	B- 19- 80 LOGGED BY . WM. Hovey	SMEET_2_OF_	4
DEPTH	REC'V	LITHOLOGY DETAIL CORE CORE	GRAPHIC MINERALIZATION GEOLOGYJSTRUCTJMIN		~ \X
0	1 1	hiskochistic Dacise Crystak Tuff. With heis an 19. pynite.		тт рекл 1.1865 2' 880 1.1 етз 1.1866 2' 19,000 24.	
, , ,	3	REDTH JASPER VEINLET	Provide and the synthe and chaken	чтс. Чен-	200
0/			PY DURT VEINHERSUN WITH PYNICE	3 mar 1960 2' 12,600 20.8 0.3	0 0
		2 X 2	PY FEH QUENTY VE PY PY ANTE QAID DILL	11111 2' 1900 1' 1' 4 4.1	56
	h.r		17 17 0151 17 17 0151	11	
	FE	Angillichy atreness hickochastic Decile Cryptal Tuff is a relatively soft easy der thing room while inthe Unit JO more viere company and	FEW QUARTE UNE CAR	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
)) _		24 UNITA 2419	14.	
	9		The by The	. Te.	0 0
				1111 2 8200	0 0
			0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 2 0 0 0 0	114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0
÷			6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	⁴ 4 ⁴ 4 ⁴	0 0
			C'H Py Cry Pyrite and Charles y		0 0
			TUER VEINING 15 INT WITH DOCK DEPACE	2.E 7.11 000 12 12 3.2	
	مع لا	111. 6 Darite breccia Kuith AMDENTE Chait To 113.0 Feer Drug up atong Foult?		7.7 1.5 2500 7.7 1.5 2500	0
		117.6-118.6 Lichechastic Decita Cryolah Turr braccia with Jarora Frug inants	Up to 196 LIVE MINATED		
130	->	117°, 8 - Miches chey gouge. 60° 4 To how zon Taharus of cone			7

RESOURCE	URCI	E ASSOCIATES OF ALASKA, INC.	DRILL	L RECORD	HOLE NO. DD H - A
PROPERTY_P GRID CO-ORD SCALE	ЕRTY 20-05 21″ =	DATE STARTED 8-11-80 COMPLET	-T_ <u>205_R_15E_S_36_C</u> -INCLINATION <u>60</u> _T ED_ <u>8-13-80</u> _LOGGED	COLLAR ELEV OTAL DEPTH BYWar_Havey_50	DRILL MODEL/TYPE WINKIE CORE SIZE D W - 44
DEPTH	REC'V	LITHOLOGY DETAIL CORE	GRAPHIC GEOLOGY STRUCT MIN	MINERALIZATION	SAMPLE THICK Cu % Pb % Zn % 224 024 PP/M AS
130	- 12 0 2 0 2 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	119. 6-128.9' browen and sheared rock and chay gouge. Gouge is at a 60.2 to honizantak aris e ere and cruched rock trage e to the transtrues and cruched rock trage ments. Most gouge choy is Dank grey to 9 chocks of athea tithologies have apponently been Dany achora fourt.	2 S.	AP LE 119.6'- 123.9' CF FREETURED DECH WITH STAINING DN FRAETURES DIELEMINETED PYNITE' DIELEMINETED PYNITE' PRUE ANTENTY CONVIENES' PRUE DREPT FOR PYNITE' OME DREPT FOR PYNITE	2.1 4.1 760
0 2 2		136.7- 189.5 while pyritic gouge and broken rouk upto flyss, pyrite.	2	Chouse REN . M This MER	
	> ₫	151.2 - 152.2 Light Gray white breecia with Volcanic Roch Fragnicats. Fragments and ap hanatio in a winite matri		Sample of Fracture bacite necciates rectares bacite ns ciates rectares nients ns pauli gouge. Intense gray greed elay hreation with some plasem.	25 270 10 10 10 10 10 10 10 10 10 1
	36	165.3 brecciated Oacite (Rhow?) hightgreen with 1mm Febopen phenocryst with Pgnite Prrizguhea evente Veinhels with Pgnite Brenen and Fractured core to 170.8. 1736-179.6 green to Yony hight green Baile. Unaltera histocheric Darite Crystah Turr Neith Fresh hormbhend crystahs and Vohcanic			

SE	RESOURCE	RCE ASSOCIATES OF ALASKA, INC.	DRILL RECORD	HOLE NO. D.D.H-2
RC RC	PER CO-	10 000 MEARING N 90. E	ATION 60 TOTAL DEPTH 202	DRILL MODEL/TYPE
SCA	Ē	DATE STARTED <u>8±11-80</u> COMPLETED_ SCALE <u>1" ± 10</u>	<u> 8-19-80</u> LOGGED BY <u>-Wa Hevey Swith</u>	SHEET_40F4
I	REC'V	LITHOLOGY DETAIL CORE	GRAPHIC MINERALIZATION GEOLOGY STRUCTIMIN	SAMPLETHICK CU % Pb % Zn % A0 Au As PPM PPM PPM PPM PPM PPM
180		Lichochastic Dacite Caryatah Tupe. 183,5 1 Foot baamen	189.6	
			Py Jaspen VEIMLET, IMM Thick	
			10-10-17 191.8 14 M To form Quanta Construction New August 17, pynite in New August 1865 7 And 190 pynite in New	<u>`0</u>
200		199-200' Broken Nocil, gouge, and cauling Material Event Foult Fonde above.		2,1 4,1 45
			100021 J 201.202 INTEGULAR QUENTA. Veinhets With Pyrite.	
			X0X	
			+-+ + + -	· · · · · ·

HOLE NO. JDH Mo. 3 DRILL MODEL/TYPE	
DRILL RECORD T. 205. R.15E. S. 36. COLLAR ELEV. INCLINATION. 60° INCLINATION. 60° ED. 8-22-80 LOGED BY. D. NEERON SQUE B-22-80 LOGED BY. D. NEERON SQUE P. 20.21 Findy discensional Byrith, C.S. & of B-22.3 LOGED BY. D. NEERON SQUE P. 20.21 LOGED BY. D. NEERON SQUE P. 20.21 Logen of the instrument of the	
IRCE ASSOCIATES OF ALASKA, INC. RTY POWELL QUADMTHAVES A-2 D-ORD 99:15E / 98:00 M BEARING N 90 E DATE STARTED 8-21-80 COMPLET 1"=10' V LITHOLOGY DETAIL CORE andacite and pyrific dacife uncocia. Including spidotized andacite and pyrific fragments including spidotized (D.5-22.3' Magnetite - bearing diarite Intrusi v fine. Straining on fradlored sortheres.	
RESOL RESOL RESOL SCALE 30 30 30 30 30 30 30 30 30 30	